Danh sách câu hỏi tự luận ( Có 577,765 câu hỏi trên 11,556 trang )

(4,0 điểm).                                                  Cho tam giác \(ABC\) vuông cân tại \(C\), nội tiếp đường tròn tâm \(\left( O \right)\). Trên đoạn thẳng \(AB\) lấy điểm \(D\) sao cho \(B{\rm{D}} = BC\). Vẽ \(DH\)vuông góc \(AC\) tại \(H\), tia phân giác của góc \[\widehat {CAB}\] cắt \(DH\) tại \(K\) và cắt đường tròn \(\left( O \right)\) tại \(E\). Tia \(CK\) cắt \(AB\) tại \(M\) và cắt đường tròn (O) tại \(F\). Tia \(AC\) và tia \(BE\) cắt nhau tại \(N\). a)   Tính số đo của \[\widehat {ANB}\] b)   Chứng minh \[\widehat {ADK} = \widehat {AFM}\] c)   Chứng minh \(M\) là trung điểm của đoạn thẳng \(A{\rm{D}}\) d)   Đường phân giác của \[\widehat {BCF}\]cắt \(BF\) tại \(U\)và đường tròn \(\left( O \right)\) tại \(L\). Đường tròn tâm \(\left( I \right)\) tiếp xúc trong với đường tròn \(\left( O \right)\) tại \(S\) ( \(S\) thuộc cung nhỏ \(BC\)) và tiếp xúc với \(BF\) tại \(T\), đồng thời đường tròn \(\left( I \right)\) cắt \(CL\) tại \(R\), \(V\) (\(R\) nằm giữa \(C\) và \(V\)). Tia \(BV\) cắt \(\left( O \right)\) tại \(P\). Vẽ dây \(PQ\) song song với \(CF\). Chứng minh \(B\), \(R\), \(Q\) thẳng hàng.

Xem chi tiết 21 lượt xem 8 giờ trước