Danh sách câu hỏi
Có 310,234 câu hỏi trên 6,205 trang
Cho tam giác ABC có độ dài ba cạnh AB = c, AC = b, BA = a và p là nửa chu vi của tam giác. Đường tròn tâm I nội tiếp tam giác lần lượt tiếp xúc với BC, AC và AB tại D, E và Fa, Chứng minh (I) có bán kính r = (p – a)tanBAC^2b, Với BAC^ = α, tìm số đo của góc EDF theo αc, Gọi H, K lần lượt là hình chiếu của B,C trên EF. Chứng minh: ∆BHF:∆CKEd, Kẻ DP vuông góc vói EF tại P. Chứng minh: ∆FPB:∆CEP và PD là tia phân giác của góc BPC^
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại Fa, Chứng minh: EM.AM = MF.OAb, Chứng minh: ES = EM = EFc, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàngd, Cho EM = R, tính FA.SM theo Re, Kẻ MH⊥AB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nhất
Cho đường tròn (O; R). Từ điểm A trên (O), kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điếm M bất kì (M khác A), kẻ cát tuyến MNP, gọi K là trung điểm NP, kẻ tiếp tuyến MB, kẻ AC⊥MB, BD⊥MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. Chứng minh:a, Bốn điểm A, M, B, O cùng thuộc một đường trònb, Năm điểm O, K, A, M, B cùng thuộc một đường trònc, OI.OM = R2 và OI.IM = IA2d, OAHB là hình thoie, O, H, M thẳng hàng