Câu hỏi:
13/07/2024 1,412Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\overrightarrow {AN} = k\overrightarrow {AM} = k.\left( {\overrightarrow {AB} + \overrightarrow {BM} } \right) = k.\left( {\overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} } \right) = k.\left[ {\overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)} \right]\)
= \(k.\left[ {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right]\) = \(k.\left[ {\frac{2}{3}\overrightarrow a + \frac{1}{3}\overrightarrow b } \right]\).
\(\overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {AD} = \frac{2}{5}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} = - \frac{1}{3}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} = - \frac{1}{3}\overrightarrow a + \frac{2}{5}\overrightarrow b \).
\(\overrightarrow {EN} = \overrightarrow {AN} - \overrightarrow {AE} = k.\left[ {\frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right] - \frac{2}{5}\overrightarrow {AC} = \frac{{2k}}{3}\overrightarrow {AB} + \left( {\frac{k}{3} - \frac{2}{5}} \right)\overrightarrow {AC} = \frac{{2k}}{3}\overrightarrow a + \left( {\frac{k}{3} - \frac{2}{5}} \right)\overrightarrow b \)
Để ba điểm D, E, N thẳng hàng thì tồn tại t ∈ ℝ sao cho \(\overrightarrow {EN} = t\overrightarrow {DN} \)
⇔ \(\frac{{2k}}{3}\overrightarrow a + \left( {\frac{k}{3} - \frac{2}{5}} \right)\overrightarrow b = t\left( { - \frac{1}{3}\overrightarrow a + \frac{2}{5}\overrightarrow b } \right)\)
⇔ \(\frac{{2k}}{3}\overrightarrow a + \left( {\frac{k}{3} - \frac{2}{5}} \right)\overrightarrow b = - \frac{t}{3}\overrightarrow a + \frac{{2t}}{5}\overrightarrow b \)
⇔ \(\left\{ \begin{array}{l}\frac{{2k}}{3} = - \frac{t}{3}\\\frac{k}{3} - \frac{2}{5} = \frac{{2t}}{5}\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}k = \frac{6}{{17}}\\t = - \frac{{12}}{{17}}\end{array} \right.\)
Do đó ba điểm D, E, N thẳng hàng khi k = \(\frac{6}{{17}}\).
Vậy \(\overrightarrow {AN} = k.\left[ {\frac{2}{3}\overrightarrow a + \frac{1}{3}\overrightarrow b } \right]\), \(\overrightarrow {DE} = - \frac{1}{3}\overrightarrow a + \frac{2}{5}\overrightarrow b \), \(\overrightarrow {EN} = \frac{{2k}}{3}\overrightarrow a + \left( {\frac{k}{3} - \frac{2}{5}} \right)\overrightarrow b \) và với k = \(\frac{6}{{17}}\) thì ba điểm D, E, N thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đoạn thẳng AB và O là trung điểm của đoạn thẳng AB. Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {AB} = 2\overrightarrow {OA} \).
B. \(\overrightarrow {AB} = 2\overrightarrow {OB} \).
C. \(\overrightarrow {AB} = - 2\overrightarrow {OB} \).
D. \(\overrightarrow {AO} = 2\overrightarrow {AB} \).
Câu 3:
Cho tam giác ABC và M là trung điểm của BC, G là trọng tâm của tam giác. Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {AM} = - 3\overrightarrow {GM} \).
B. \(\overrightarrow {AM} = \frac{3}{2}\overrightarrow {GM} \).
C. \(\overrightarrow {AM} = - \frac{3}{2}\overrightarrow {GM} \).
D. \(\overrightarrow {AM} = 3\overrightarrow {GM} \).
Câu 4:
Cho . Khẳng định nào sau đây là sai?
A. \(\overrightarrow a \) và \(4\overrightarrow a \) cùng phương.
B. \(\overrightarrow a \) và \( - 4\overrightarrow a \) cùng phương.
C. \(\overrightarrow a \) và \(4\overrightarrow a \) không cùng hướng.
D. \(\overrightarrow a \) và \( - 4\overrightarrow a \) ngược hướng.
Câu 5:
Câu 6:
Câu 7:
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận