Câu hỏi:
13/07/2024 1,440
Cho tam giác ABC, lấy các điểm A’, B’, C’ không trùng với đỉnh của tam giác và lần lượt thuộc các cạnh AB, BC, CA thỏa mãn \[\frac{{{\rm{AA}}'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}}\]. Chứng minh hai tam giác ABC và A’B’C’ có cùng trọng tâm.
Quảng cáo
Trả lời:
Lời giải
Đặt \[\frac{{{\rm{AA}}'}}{{AB}} = \frac{{BB'}}{{BC}} = \frac{{CC'}}{{CA}} = t\] (t > 0)
⇔ \[\left\{ \begin{array}{l}AA' = tAB\\BB' = tBC\\CC' = tCA\end{array} \right.\]
⇒ \[\left\{ \begin{array}{l}\overrightarrow {AA'} = t\overrightarrow {AB} \\\overrightarrow {BB'} = t\overrightarrow {BC} \\\overrightarrow {CC'} = t\overrightarrow {CA} \end{array} \right.\] (vì các điểm A’, B’, C’ lần lượt thuộc các cạnh AB, BC, CA)
Gọi G là trọng tâm tam giác ABC nên \[\overrightarrow {{\rm{GA}}} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \]
Ta có: \[\overrightarrow {{\rm{AA}}'} + \overrightarrow {BB'} + \overrightarrow {CC'} = t\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right)\]
⇔ \[\overrightarrow {{\rm{AG}}} + \overrightarrow {{\rm{GA}}'} + \overrightarrow {BG} + \overrightarrow {GB'} + \overrightarrow {CG} + \overrightarrow {GC'} = t\left( {\overrightarrow {AC} + \overrightarrow {CA} } \right)\]
⇔ \[\left( {\overrightarrow {{\rm{AG}}} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {{\rm{GA}}'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) = t.\overrightarrow {AA} \]
⇔ \[ - \left( {\overrightarrow {{\rm{GA}}} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + \left( {\overrightarrow {{\rm{GA}}'} + \overrightarrow {GB'} + \overrightarrow {GC'} } \right) = t.\overrightarrow 0 \]
⇔ \[\overrightarrow {{\rm{GA}}'} + \overrightarrow {GB'} + \overrightarrow {GC'} = \overrightarrow 0 \]
Suy ra G cũng là trọng tâm của tam giác A’B’C’.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có: \(\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} = \frac{1}{5}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{1}{5}\overrightarrow {AB} + \frac{1}{5}\overrightarrow {AD} = \frac{1}{5}\overrightarrow a + \frac{1}{5}\overrightarrow b \).
\(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AC} - \frac{1}{2}\overrightarrow {AB} = \frac{1}{5}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AB} = - \frac{3}{{10}}\overrightarrow {AB} + \frac{1}{5}\overrightarrow {AD} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \).
\(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} = \frac{1}{3}\overrightarrow {AD} - \frac{1}{5}\overrightarrow {AC} = \frac{1}{3}\overrightarrow {AD} - \frac{1}{5}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = - \frac{1}{5}\overrightarrow {AB} + \frac{2}{{15}}\overrightarrow {AD} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \).
Ta có \[ - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b = \frac{3}{2}\left( { - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b } \right)\] hay \(\overrightarrow {MN} = \frac{3}{2}\overrightarrow {NP} \)
Do đó M, N, P thẳng hàng.
Vậy \(\overrightarrow {AN} = \frac{1}{5}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \); \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \) và ba điểm M, N, P thẳng hàng.
Lời giải
Lời giải
Đáp án đúng là B
Vì O là trung điểm của AB nên OA = OB = \(\frac{1}{2}\)AB hay AB = 2OA = 2OB.
Ta có: \(\overrightarrow {AB} \) và \(\overrightarrow {OA} \) là hai vectơ ngược hướng nên \(\overrightarrow {AB} = - 2\overrightarrow {OA} \). Do đó A và D sai.
Ta lại có: \(\overrightarrow {AB} \) và \(\overrightarrow {OB} \) là hai vectơ cùng hướng nên \(\overrightarrow {AB} = 2\overrightarrow {OB} \). Do đó B đúng và C sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.