Câu hỏi:

06/08/2022 547

Cho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thỏa mãn \(BM = \frac{1}{3}BC\), \(CN = \frac{5}{4}CA\). Tính:

MN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: \(\overrightarrow {MN} = \overrightarrow {MC} + \overrightarrow {CN} \)

\(\overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BC} + \overrightarrow {CN} = - \frac{1}{3}\overrightarrow {BC} + \overrightarrow {BC} + \frac{5}{4}\overrightarrow {CA} = \frac{2}{3}\overrightarrow {BC} + \frac{5}{4}\overrightarrow {CA} \)

\({\overrightarrow {MN} ^2} = {\left( {\frac{2}{3}\overrightarrow {BC} + \frac{5}{4}\overrightarrow {CA} } \right)^2}\)

\({\overrightarrow {MN} ^2} = {\left( {\frac{2}{3}\overrightarrow {BC} } \right)^2} + \frac{5}{3}\overrightarrow {BC} .\overrightarrow {CA} + {\left( {\frac{5}{4}\overrightarrow {CA} } \right)^2}\)

\({\overrightarrow {MN} ^2} = {\left( {\frac{2}{3}\overrightarrow {BC} } \right)^2} - \frac{5}{3}\overrightarrow {CB} .\overrightarrow {CA} + {\left( {\frac{5}{4}\overrightarrow {CA} } \right)^2}\)

\({\overrightarrow {MN} ^2} = \frac{4}{9}{\overrightarrow {BC} ^2} - \frac{5}{3}\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {CA} } \right|{\rm{cos}}\left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) + \frac{{25}}{{16}}{\overrightarrow {CA} ^2}\)

\({\overrightarrow {MN} ^2} = \frac{4}{9}{\overrightarrow {BC} ^2} - \frac{5}{3}\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {CA} } \right|{\rm{cos}}\widehat {CBA} + \frac{{25}}{{16}}{\overrightarrow {CA} ^2}\)

\({\overrightarrow {MN} ^2} = \frac{4}{9}{a^2} - \frac{5}{3}a.a{\rm{cos60}}^\circ + \frac{{25}}{{16}}{a^2}\)

\({\overrightarrow {MN} ^2} = \frac{4}{9}{a^2} - \frac{5}{6}{a^2} + \frac{{25}}{{16}}{a^2} = \frac{{169}}{{144}}{a^2}\)

\(MN = \frac{{13}}{{12}}a\)

Vậy \(MN = \frac{{13}}{{12}}a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là D

Ta có: \(\overrightarrow {MA} .\overrightarrow {MB} = 0\)

\(\widehat {\left( {\overrightarrow {MA} ;\overrightarrow {MB} } \right)} = \widehat {AMB} = 90^\circ \)

Do đó tập hợp các điểm M thỏa mãn \(\widehat {AMB} = 90^\circ \) là đường tròn đường kính AB.

Lời giải

Lời giải

Ta có: MA2 + MB2 + MC2 = \({\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)

= \({\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)

= \({\overrightarrow {MG} ^2} + 2.\overrightarrow {MG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}\)

= \(3{\overrightarrow {MG} ^2} + \left( {{{\overrightarrow {GA} }^2} + {{\overrightarrow {GB} }^2} + {{\overrightarrow {GC} }^2}} \right) + \left( {2.\overrightarrow {MG} .\overrightarrow {GA} + 2\overrightarrow {MG} .\overrightarrow {GB} + 2\overrightarrow {MG} .\overrightarrow {GC} } \right)\)

= \(3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right) + 2.\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)

= \(3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP