Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c)

Media VietJack

Để ∆OAC = ∆OBD theo trường hợp góc – cạnh – góc thì một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia.

Mà hai tam giác trên có OA = OB và O^  là góc chung.

Mặt khác, trong DOAC, cạnh OA có hai góc kề là O^  và OAC^ ;

Trong DOBD, cạnh OB có hai góc kề là O^  và OBD^.

Do đó điều kiện còn lại là điều kiện về góc, đó là OAC^=OBD^ .

Vậy Hình 31c cần thêm điều kiện OAC^=OBD^ .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét DABD và DACD có:

AB = AC (giả thiết),

BD = CD (do D là trung điểm của BC),

AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ABD^=ACD^  hay MBC^=NCB^ .

Xét DBMC và DCNB có:

BMC^=CNB^=90°,

BC là cạnh chung,

MBC^=NCB^ (chứng minh trên),

Do đó DBMC và DCNB (cạnh huyền – góc nhọn).

Suy ra BM = CN (hai cạnh tương ứng).

Ta có AB = AM + MB, AC = AN + NC.

Mà AB = AC, BM = CN.

Suy ra AM = AN.

Vậy AM = AN.

Lời giải

Media VietJack

Qua C kẻ đường thẳng d song song với AB, d cắt AM tại N.

Suy ra ABC^=BCN^  (hai góc so le trong).

Ta có BA ⊥ AC, d // AB.

Suy ra d ⊥ AC hay NCA^=90° .

Xét DMBA và DMCN có:

 BM = CM (vì M là trung điểm của BC),

 M^1=M^2(hai góc đối đỉnh),

ABC^=NCB^ (chứng minh trên)

Do đó ∆MBA = ∆MCN (g.c.g).

Suy ra AB = CN và AM = NM (các cặp cạnh tương ứng).

Xét DBAC và DNCA có:

AC là cạnh chung,

BAC^=NCA^ (cùng bằng 90 ),

AB = NC (chứng minh trên)

Do đó ∆BAC = ∆NCA (c.g.c)

Suy ra BC = NA (hai cạnh tương ứng).

Mà AM = MN, AN = AM + MN = 2AM.

Nên BC = AN = 2AM.

Vậy 2AM = BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP