Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Gọi I là giao điểm của AB và DH, K là giao điểm của EH và AC.

• Xét ∆ADI và ∆AHI có:

AD = AH (chứng minh câu b),

DAI^=HAI^ (do xAB^=BAH^ ),

AI là cạnh chung.

Do đó ∆ADI = ∆AHI (c.g.c).

Suy ra ADI^=AHI^  (hai góc tương ứng).

Hay ADH^=AHD^ .

• Xét ∆AHK và ∆AEK có:

AH = AE (chứng minh câu b),

HAK^=EAK^ (do HAC^=EAC^  ),

AK là cạnh chung

Do đó ∆AHK = ∆AEK (c.g.c)

Suy ra AHK^=AEK^  (hai góc tương ứng).

Hay AHE^=AEH^ .

Xét DADH có: ADH^+AHD^+HAD^=180°  (tổng ba góc của một tam giác).

ADH^=AHD^.  nên AHD^=180°HAD^2

Xét DAEH có: AEH^+AHE^+HAE^=180°  (tổng ba góc của một tam giác)

AHE^=AEH^  nên AHE^=180°HAE^2

Ta có DHE^=AHD^+AHE^=180°HAD^2+180°HAE^2

=360°HAD^+HAE^2=360°180°2=90°        

Suy ra DH ⊥ HE.

Vậy DH ⊥ HE.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Xét DABD và DACD có:

AB = AC (giả thiết),

BD = CD (do D là trung điểm của BC),

AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ABD^=ACD^  hay MBC^=NCB^ .

Xét DBMC và DCNB có:

BMC^=CNB^=90°,

BC là cạnh chung,

MBC^=NCB^ (chứng minh trên),

Do đó DBMC và DCNB (cạnh huyền – góc nhọn).

Suy ra BM = CN (hai cạnh tương ứng).

Ta có AB = AM + MB, AC = AN + NC.

Mà AB = AC, BM = CN.

Suy ra AM = AN.

Vậy AM = AN.

Lời giải

Media VietJack

Qua C kẻ đường thẳng d song song với AB, d cắt AM tại N.

Suy ra ABC^=BCN^  (hai góc so le trong).

Ta có BA ⊥ AC, d // AB.

Suy ra d ⊥ AC hay NCA^=90° .

Xét DMBA và DMCN có:

 BM = CM (vì M là trung điểm của BC),

 M^1=M^2(hai góc đối đỉnh),

ABC^=NCB^ (chứng minh trên)

Do đó ∆MBA = ∆MCN (g.c.g).

Suy ra AB = CN và AM = NM (các cặp cạnh tương ứng).

Xét DBAC và DNCA có:

AC là cạnh chung,

BAC^=NCA^ (cùng bằng 90 ),

AB = NC (chứng minh trên)

Do đó ∆BAC = ∆NCA (c.g.c)

Suy ra BC = NA (hai cạnh tương ứng).

Mà AM = MN, AN = AM + MN = 2AM.

Nên BC = AN = 2AM.

Vậy 2AM = BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay