Câu hỏi:
13/07/2024 1,286
Cho tam giác ABC cân tại A có M là trung điểm BC; ME vuông góc với AB tại E, MF vuông góc với AC tại F. Chứng minh:
a) AM là trung trực của đoạn thẳng BC;
Cho tam giác ABC cân tại A có M là trung điểm BC; ME vuông góc với AB tại E, MF vuông góc với AC tại F. Chứng minh:
a) AM là trung trực của đoạn thẳng BC;
Quảng cáo
Trả lời:
a) Tam giác ABC cân tại A nên AB = AC (hai cạnh bên).
Suy ra A thuộc đường trung trực của BC.
Lại có M là trung điểm của BC.
Nên AM là đường trung trực của BC.
Vậy AM là trung trực của đoạn thẳng BC.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường trung trực của AC cắt AB tại D nên DA = DC.
Do đó tam giác ADC cân tại D.
Suy ra
Vì CD là tia phân giác của góc C nên
Suy ra
Hay
Vì tam giác cân ABC nên (hai góc ở đáy).
Do đó
Mà (tổng ba góc của tam giác ABC).
Suy ra hay
Nên
Khi đó
Vậy DABC có
Lời giải
a) Vì DABC vuông tại A nên (trong tam giác vuông, tổng hai góc nhọn bằng 90 ).
Suy ra .
Vì điểm M thuộc đường trung trực của BC nên MB = MC.
Do đó tam giác MBC cân ở M.
Suy ra
Mặt khác (hai góc kề nhau)
Nên
Suy ra
Do đó BM là tia phân giác của góc ABC.
Vậy BM là tia phân giác của góc ABC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.