Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Quảng cáo
Trả lời:
Tam giác ABC có hai trung tuyến BM và CN bằng nhau.
Gọi G là giao điểm của BM và CN.
Theo tính chất trọng tâm tam giác có: BG = BM và CG = CN.
Vì BM = CN nên BG = CG.
Suy ra tam giác BGC cân tại G.
Do đó (hai góc ở đáy).
Xét MBC và NCB có:
BC là cạnh chung,
(do ),
MB = NC (giả thiết)
Do đó ∆MBC = ∆NCB (c.g.c)
Suy ra (hai góc tương ứng).
Khi đó tam giác ABC cân tại A.
Vậy nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có AE = AC nên CE = AC
Trong tam giác BCD có CA là trung tuyến và CE = AC.
Suy ra E là trọng tâm tam giác BCD.
Vậy E là trọng tâm tam giác BCD.
Lời giải
Xét tam giác ABC có BD và AM là các đường trung tuyến, BD cắt AM tại I.
Suy ra I là trọng tâm của tam giác ABC.
Nên BI = BD (1)
Xét tam giác AEC có ED và AN là các đường trung tuyến, ED cắt AN tại K.
Suy ra K là trọng tâm của tam giác AEC.
Nên (2)
Mặt khác BD = DE, DB + DE = BE
Nên BD = DE = BE (3)
Từ (1), (2) và (3) ta có:
BI = EK = BD = BE = BE.
Ta lại có: BI + IK + KE = BE.
Suy ra BE + IK + BE = BE
Suy ra IK = BE.
Do đó BI = IK = EK (cùng bằng BE).
Vậy BI = IK = EK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.