Câu hỏi:

13/07/2024 876

Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Tam giác ABC có hai trung tuyến BM và CN bằng nhau.

Gọi G là giao điểm của BM và CN.

Theo tính chất trọng tâm tam giác có: BG =23 BM và CG =23 CN.

Vì BM = CN nên BG = CG.

Suy ra tam giác BGC cân tại G.

Do đó GBC^=GCB^  (hai góc ở đáy).

Xét MBC và NCB có:

BC là cạnh chung,

MBC^=NCB^ (do GBC^=GCB^  ),

MB = NC (giả thiết)

Do đó ∆MBC = ∆NCB (c.g.c)

Suy ra MCB^=NBC^  (hai góc tương ứng).

Khi đó tam giác ABC cân tại A.

Vậy nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho AE = 13 AC.

a) Chứng minh E là trọng tâm tam giác BCD.

Xem đáp án » 13/07/2024 4,068

Câu 2:

Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.

Xem đáp án » 13/07/2024 3,043

Câu 3:

Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.

a) Chứng minh CG là trung tuyến của tam giác ACD.

Xem đáp án » 12/07/2024 2,517

Câu 4:

Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.

a) Chứng minh BG = GC = CE = BE.

Xem đáp án » 13/07/2024 1,905

Câu 5:

Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh:

a) BM = CN;

Xem đáp án » 12/07/2024 1,449

Câu 6:

Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.

a) Chứng minh DE = FN và tam giác DFN là tam giác cân.

Xem đáp án » 12/07/2024 1,417

Câu 7:

c) Nếu CG = 12 AE thì tam giác ABC là tam giác gì? Vì sao?

Xem đáp án » 12/07/2024 1,306
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua