Câu hỏi:
12/07/2024 395b) Trên tia AG lấy điểm D sao cho GD = GA. Chứng minh tam giác BGD là tam giác đều.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Ta có GA = GB (theo câu a) và GA = GD (giả thiết).
Nên GD = GB (1)
Ta có G là trọng tam giác ABC nên GM = GA.
Mà GA = GD nên GM = GD.
Do đó GM = MD = GD.
Xét GMC và DMB có:
MB = MC (chứng minh câu a),
(hai góc đối đỉnh),
MG = MD (chứng minh trên).
Do đó GMC = DMB (c.g.c)
Suy ra GC = DB (hai cạnh tương ứng).
Lại có GC = GB (theo câu a)
Nên GB = DB (2)
Từ (1) và (2) suy ra GD = GB = DB.
Do đó tam giác BGD là tam giác đều.
Vậy tam giác BGD là tam giác đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho AE = AC.
a) Chứng minh E là trọng tâm tam giác BCD.
Câu 2:
Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.
Câu 3:
Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.
a) Chứng minh BG = GC = CE = BE.
Câu 4:
Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.
a) Chứng minh CG là trung tuyến của tam giác ACD.
Câu 5:
Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh:
a) BM = CN;
Câu 6:
Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.
a) Chứng minh DE = FN và tam giác DFN là tam giác cân.
về câu hỏi!