Câu hỏi:

13/07/2024 1,402

Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Xét tam giác HAB có BD ⊥ AH, AE ⊥ BH, HF ⊥ AB và ba đường cao BD, AE, HF cắt nhau tại C.

Do đó C là trực tâm tam giác HAB.

• Xét tam giác HBC có HD ⊥ BC, BF ⊥ HC, CE ⊥ BH và ba đường cao HD, BF, CE cắt nhau tại A.

Do đó A là trực tâm tam giác HBC.

• Xét tam giác HCA có HE ⊥ AC, AF ⊥ HC, CD ⊥ AH và ba đường cao HE, AF, CD cắt nhau tại B.

Do đó B là trực tâm tam giác HCA.

Vậy trực tâm của các tam giác HAB, HBC, HCA tương ứng là C, A, B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Vì tam giác ABC cân tại A nên AB = AC, ABC^=ACB^ .

Xét DBME và DCMF có:

BEM^=CFM^(=90°),

BM = CM (vì M là trung điểm của BC),

ABC^=ACB^ (chứng minh trên).

Do đó ∆BME = ∆CMF (cạnh huyền – góc nhọn).

Suy ra ME = MF, BE = CF (các cặp cạnh tương ứng).

Ta có ME = MF nên M nằm trên đường trung trực của đoạn thẳng EF (1)

Lại có AB = AE + EB, AC = AF + FC

Mà AB = AC, BE = CF (chứng minh trên)

Suy ra AE = AF nên A nằm trên đường trung trực của đoạn thẳng EF (2)

Từ (1) và (2) suy ra AM là đường trung trực của đoạn thẳng EF.

Do đó AM vuông góc với EF.

Vậy AM vuông góc với EF.

Lời giải

Media VietJack

a) Gọi K là giao điểm của BD và AE.

Xét DBAD và DBED có:

BAD^=BED^(=90°),

BD là cạnh chung,

ABD^=EBD^ (do BD là tia phân giác của góc ABC)

Do đó ∆BAD = ∆BED (cạnh huyền – góc nhọn).

Suy ra BA = BE (hai cạnh tương ứng).

Xét DABK và DEBK có:

BA = BE (chứng minh trên),

ABK^=EBK^ (do BD là tia phân giác của góc ABC),

BK là cạnh chung

Do đó DABK = DEBK (c.g.c)

Suy ra BKA^=BKE^  (hai góc tương ứng).

Mà BKA^+BKE^=180°   (hai góc kề bù)

Nên BKA^=BKE^=180°2=90°

Hay BK ⊥ AE.

Do BK là đường cao của tam giác BAE và B, K, D thẳng hàng nên trực tâm H của tam giác BAE nằm trên đường thẳng BD.

Vậy trực tâm H của tam giác BAE nằm trên đường thẳng BD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP