Câu hỏi:

13/07/2024 510

Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của BC.

a) Chứng minh SGBC = \[\frac{1}{3}\]SABC.

Gợi ý. Sử dụng GM = \[\frac{1}{3}\]AM để chứng minh SGBM = \[\frac{1}{3}\]SABM, SGCM = \[\frac{1}{3}\]SACM.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC (ảnh 1)

Ta có SGBC = SBGM + SCGM.

Vì G là trọng tâm của tam giác ABC nên GM = \(\frac{1}{3}\)AM,

suy ra SBGM = \[\frac{1}{3}\]SBAM, SCGM = \[\frac{1}{3}\]SACM.

Suy ra SGBC = SBGM + SCGM = \[\frac{1}{3}\]SBAM + \[\frac{1}{3}\]SACM  = \(\frac{1}{3}\)(SBAM + SACM) = \[\frac{1}{3}\]SABC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một (ảnh 1)

Ta có AM vừa là đường trung tuyến vừa là đường cao xuất phát từ đỉnh A của tam giác ABC.

Xét hai tam giác vuông ABM và ACM, ta có: AM chung, BM = CM

nên ∆ABM = ∆ACM (hai cạnh góc vuông).

Suy ra AB = AC.

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Lời giải

Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.  (ảnh 1)

Từ câu a) ∆AHB = ∆AHC , suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng).

Ta có AC // HD, suy ra \(\widehat {{A_2}} = \widehat {{H_1}}\) (so le trong), từ đó \(\widehat {{A_1}} = \widehat {{H_1}}\) nên ∆ADH cân tại D, suy ra AD = DH.         (1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay