Câu hỏi:

11/07/2024 239

Cho tứ giác ABCD.G là trung điểm của đoạn nối các trung điểm của hai đường chéo AC BD. Gọi m là một đường thẳng không cắt cạnh nào của hình thang ABCD; Gọi A', B', C’, D’, G' lần lượt là hình chiếu của A, B, C, D, G lên đường thẳng m. Chứng minh GG' = 12(AA'+BB'+CC'+DD’).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi E và F lần lượt là trung điểm của AC và BD; E' và F' lần lượt là hình chiếu của E, F trên đường thẳng m.

Khi đó, GG' là đường trung bình của hình thang EE'F'F

Cho tứ giác ABCD. Có G là trung điểm của đoạn nối các trung điểm của hai đường chéo AC và BD (ảnh 1)

GG'=12EE' +FF'). 

Mà EE' và FF' lần lượt là đường trung bình của hình thang AA'C'C và BB'D'D.

EE'=12(AA' +CC') và FF'=12(BB' +DD')

Thay vào (1) ta được ĐPCM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, kẻ đường cao AH. Từ H kẻ tia Hx vuông góc với AB tại P và tia Hy vuông góc vói AC tại Q. Trên các tia Hx, Hy lần lượt lấy các điếm D và E sao cho PH = PD, QH = QE. Chứng minh:

a) A là trung điểm của DE

Xem đáp án » 11/07/2024 523

Câu 2:

Cho tam giác ABCAM là trung tuyến ứng vói BC. Trên cạnh AC lấy điểm D sao cho AD = 12 DC. Kẻ Mx song song với BD và cắt AC tại E. Đoạn BD cắt AM tại I. Chứng minh:

a) AD = DE = EC

Xem đáp án » 11/07/2024 500

Câu 3:

b) So sánh EF và 12( AB + CD).

Xem đáp án » 11/07/2024 352

Câu 4:

b) SAIB= SIBM.

Xem đáp án » 11/07/2024 347

Câu 5:

c) Tìm điều kiện của tứ giác ABCD để ba điểm E, F, K thẳng hàng. Từ đó chứng minh EF = 12(AB + CD).

Xem đáp án » 12/07/2024 327

Câu 6:

c) PQ = AH.

Xem đáp án » 11/07/2024 282

Câu 7:

Cho tứ giác ABCD. Gọi E, F, K lần lượt là trung điểm của AD, BC, AC.

a) Chứng minh EK song song với CD, FK song song với AB.

Xem đáp án » 12/07/2024 280

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store