Câu hỏi:

12/07/2024 6,476

Cho số thực a2 . Tìm giá trị nhỏ nhất (GTNN) của  A=a+1a 

Sai lầm thường gặp là:A=a+1a 2a.1a=2 . Vậy GTNN của A là 2.

Nguyên nhân sai lầm: GTNN của A là 2 a=1a a=1 vô lý vì theo giả thuyết thì a2 .

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải đúng: A=a+1a =a4+1a+3a42a4.1a+3a41+3.24=52

                Dấu “=” xảy ra    a4=1a  hay a=2     

                 Vậy GTNN của A52 .

Vì sao chúng ta lại biết phân tích được như lời giải trên. Đây chính là kỹ thuật chọn điểm rơi trong bất đẳng thức.

Quay lại bài toán trên, dễ thấy a càng tăng thì A càng tăng. Ta dự đoán A đạt GTNN khi a=2  . Khi đó ta nói A đạt GTNN tại “Điểm rơi a=2. Ta không thể áp dụng bất đẳng thức AM - GM cho hai số a và 1a  vì không thỏa quy tắc dấu “=”. Vì vậy ta phải tách a hoặc 1a  để khi áp dụng bất đẳng thức AM - GM thì thỏa quy tắc dấu “=”. Giả sử ta sử dụng bất đẳng thức AM - GM cho cặp số aα,1a  sao cho tại “Điểm rơi a=2 thì aα=1a , ta có sơ đồ sau:   

a=2aα=2α1a=122α=12α=4

Khi đó:  A=a+1a =a4+3a4+1a và ta có lời giải như trên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho 3 số thực dương a, b, c  thỏa  a+2b+3c20 .

Tìm GTNN của  A=a+b+c+3a+92b+4c 

Xem đáp án » 12/07/2024 3,820

Câu 2:

Cho 2 số thực dương a, b thỏa a+b1 . Tìm GTNN của A=ab+1ab 

Xem đáp án » 12/07/2024 3,446

Câu 3:

Cho số thực a6 . Tìm GTNN của A=a2+18a 

Xem đáp án » 12/07/2024 2,467

Câu 4:

Cho3 số thực dương a, b, c  thỏa  ab12bc8 .

Chứng minh rằng: a+b+c+21ab+1bc+1ca +8abc12112

Xem đáp án » 12/07/2024 922

Bình luận


Bình luận