Câu hỏi:

12/07/2024 2,075

Cho tam giác vuông với các cạnh góc vuông có độ dài là 3 cm và 4 cm , kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và các đoạn thẳng mà nó chia ra trên cạnh huyền.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử tam giác ABC có các cạnh góc vuông AB = 3cm, AC = 4cm, AH là đường cao.

Áp dụng định lí Pitago cho tam giác vuông ABC:

BC2=AB2+AC2=32+42=25BC=5 cm

Áp dụng hệ thức lượng trong tam giác vuông ta có:

BA2= BH.BCBH=BA2BCBH=325BH=95  (cm)

CA2=CH.CBCH=CA2CBCH=425CH=165 (cm)

AH2=HB.HCAH2=95.165AH=125 (cm)

 

(Có thể tính đường cao AH bởi công thức 1AH2=1AB2+1AC2 )

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

*Cách 1: Ta có ΔABC  vuông tại A nên :

BC=AB2+AC2=82+62=10(cm) (Định lý Pytago)

ΔABC vuông tại A, AH BC, nên  AH.BC=AB.ACAH=AB.ACBC=4,8(cm)

*Cách 2: ΔABC  vuông tại A, AH BC, nên: 1AH2=1AB2+1AC2AH2=AB2.AC2AB2+AC2AH=64.36100=4.8(cm)

*Cách 3: Tam giác ABC vuông tại A, Theo định lý Pytago ta có

BC2=AB2+AC2=82+62=100 nên suy ra BC=10cm.

ΔABC vuông tại A nên: BH.BC=AB2BH=AB2BC=6.4(cm) . Mà HC=BCBH=3,6  (cm)

ΔABC vuông tại A, AH BC, nên: AH2=BH.HC=4.82AH=4.8(cm)

*Cách 4:  

Media VietJack

Gọi M là trung điểm BC.

Ta có : BM=AM=12BC=5cm

+ Tính được BH=6.4cm

+ Nên MH=BHBM=6,45=1(cm)

Áp dụng định lý Pitago vào ΔHAM  vuông tại H: AH=AM2MH2=521,42=4,8(cm)

Lời giải

Media VietJack

Qua A vẽ một đường thẳng vuông góc với AB cắt tia BO tại D.

Ta có    D^+B1^=90°

B1^=B2^  nên  AOD^=D^

Do đó DAOD cân tại A. Suy ra AD=AO=23  (cm).

Vẽ AH ^ OD thì HO = HD.

Ta đặt HO=HD=x  thì  BD=2x + 2.

Xét DABD vuông tại A, đường cao AH, ta có  AD2=BD.HD.

Suy ra (23)2=x(2x+2)  Từ đó ta được phương trình:

2x2+ 2x 12=0 Û (x – 2)(x + 3) = 0 Û x = 2 hoặc x = -3.

Giá trị x = 2 được chọn, giá trị x = -3 bị loại.

Do đó BD=2+2+2=6  (cm). Suy ra AB=62(23)2=24=26  (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay