Câu hỏi:

12/07/2024 1,299

Cho hai đường tròn (O) và (O) cắt nhau tại A và B. Vẽ dây AC của đường tròn (O) tiếp xúc với đường tròn (O). Vẽ dây AD của đường tròn (O) tiếp xúc với đường tròn (O). Chứng minh rằng:

a) AB2 = BC.BD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Vẽ dây AC của đường tròn (O) tiếp xúc với đường tròn (O’).  (ảnh 1)

ΔABC ΔDBA 

A1^=D1^; C^=A2^ 

(góc tạo bởi tia tiếp tuyến và dây cung và

góc nội tiếp cung chắn cung AB)

Do đó ΔABC # ΔDBA (g.g)

Suy ra ABBD=CBAB.Vậy AB2 = BC.BD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, điểm M thuộc cung nhỏ BC.  (ảnh 1)

DAE^=sdDBM2   (góc nội tiếp) .

AFD^=sdDB+sdMB2=sdDBM2( góc có đỉnh ở bên trong đường tròn)

Suy ra DAE^=AFD^

Lời giải

a)

Từ một điểm A ở bên ngoài đường tròn (O), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm). Vẽ dây CD // AB. (ảnh 1)

ΔMBE ΔMCB 

M1^ chung; B1^=C2^ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung BE)

Nên ΔMBE #  ΔMCB (g.g)

Suy ra MBMC=MEMB 

Do đó MB2 = MC.ME    

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP