Câu hỏi:

12/07/2024 635

Cho đường tròn (O) và một dây AB. Vẽ đường kính  (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm M. Các đường thẳng CM và DM cắt đường thẳng AB lần lượt tại E và F. Tiếp tuyến của đường tròn tại M cắt đường thẳng AB tại N. Chứng minh rằng N là trung điểm của EF.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) và một dây AB. Vẽ đường kính   (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm M.  (ảnh 1)

Ta sẽ chứng minh NE = NF bằng cách dùng NM làm trung gian.

Ta có  CDAB nên DA=DB CA=CB  (định lí đường kính vuông góc với dây cung).

Góc F1 là góc có đỉnh ở bên trong một đường tròn nên:

F^1=sđBM+sđAD2=sđBM+sđBD2=sđMBD2   (1)

M3^ là góc tạo bởi tia tiếp tuyến và dây cung nên M2^=sđMC2   (2)

Từ (1) và (2) suy ra F1^=M3^ do đó ΔNMF cân tại N, suy ra NF = NM.

Góc E là góc có đỉnh ở bên ngoài đường tròn nên: E^=sđACsđBM2=sđBCsđBM2=sđMC2  (3)

Góc M2 là góc tạo bởi tia tiếp tuyến và dây cung nên M2^=sđMC2 . (4)

Từ (3) và (4) suy ra E^=M2^ , dẫn tới E^=M1^  (vì M1^=M2^ )

Do đó ΔNME cân, suy ra NE = NM tại N. Do vậy NE = NF. Vậy N là trung điểm của EF

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, điểm M thuộc cung nhỏ BC. Gọi E là giao điểm của MA và CD, F là giao điểm của MD và AB. Chứng minh rằng:

a) DAE^=AFD^

Xem đáp án » 19/10/2022 3,069

Câu 2:

Cho đường tròn (O) và hai đường kính vuông góc AB và CD. Trên cung BD lấy một điểm M. Tiếp tuyến của (O) tại M cắt AB ở E ; CM cắt AB tại F. Chứng tỏ EF = EM.

Xem đáp án » 12/07/2024 2,736

Câu 3:

Cho đường tròn (O) trong đó có ba dây bằng nhau AB, AC, BD sao cho hai dây AC, BD cắt nhau tại M tạo thành góc vuông AMB. Tính số đo các cung nhỏ AB, CD.

Xem đáp án » 12/07/2024 2,530

Câu 4:

Cho tứ giác ABCD có bốn đỉnh thuộc đường tròn . Gọi M, N, P, Q lần lượt là điểm chính giữa các cung AB, BC, CD, DA. Chứng minh rằng : .MPNQ

Xem đáp án » 12/07/2024 2,280

Câu 5:

Cho đường tròn (O) và dây AB. Vẽ tiếp tuyến xy // AB có M là tiếp điểm. Chứng minh rằng AMB  là tam giác cân.

Xem đáp án » 12/07/2024 1,494

Câu 6:

Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giũa A và D). Tia phân giác của góc CBD cắt đường tròn tại m, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AHBE  ;       

Xem đáp án » 19/10/2022 1,375

Câu 7:

b) Khi M di động trên cung nhỏ BC thì diện tích tứ giác AEFD không đổi.

Xem đáp án » 12/07/2024 1,313

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL