Câu hỏi:

20/10/2022 2,381

c) Gọi I là tâm đường tròn ngoại tiếp ∆ AEF. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm N di chuyển trên cung nhỏ MB

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Gọi J là giao của (I) với đoạn AB.

FAC^=CEB^=90oABE^   => tam giác FAC đồng dạng với tam giác BEC(g-g)

=>FCBC=ACEC=>CFCE=BCAC

Vì AEFJ là tứ giác nội tiếp nên   FJC^=FEA ^=180oAJF^

=>  ΔCFJ ~Δ CAE(g-g) => CFCA=CJCECFCE=CA.CJ

Suy ra  BC.AC = CA.CJ BC = CJ C là trung điểm BJ (vì J ≠ B)

Suy ra J là điểm cố định

IA = IJ  nên I luôn thuộc đường trung trực của AJ, là đường cố định.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, M là trung điểm của cạnh AC. Đường tròn đường kính MC cắt BC tại N. Đường thẳng BM cắt đường tròn đường kính MC tại D.

1) Chứng minh tứ giác BADC nội tiếp. Xác định tâm O của đường tròn đó.

Xem đáp án » 20/10/2022 5,946

Câu 2:

Cho đường tròn (O) và điểm A nằm trên đường tròn. Gọi d là tiếp tuyến của (O) tại A. Trên d lấy điểm D (D không trùng với A), kẻ tiếp tuyến DB của (O) (B là điểm, B không trùng với A).

a) Chứng minh rằng tứ giác AOBD nội tiếp.

Xem đáp án » 20/10/2022 3,481

Câu 3:

b, Xác định vị trí d để chu vi tam giác BEF lớn nhất, diện tích tam giác BEF lớn nhất.

Xem đáp án » 13/07/2024 2,112

Câu 4:

b, Chứng minh rằng tư giác BCED là hình thang cân.

Xem đáp án » 13/07/2024 1,207

Câu 5:

d) Gọi E là giao điểm của DH và CI. Gọi F là giao điểm thứ hai của đường tròn đường kính OD và đường tròn ngoại tiếp tam giác OIM. Chứng minh rằng O, E, F thẳng hàng.

Xem đáp án » 20/10/2022 1,170

Câu 6:

d,  Gọi G là trọng tâm của tam giác ABC.

Chứng minh rằng SAHG=2SAGO .

Xem đáp án » 20/10/2022 1,081