Câu hỏi:

19/08/2025 1,339 Lưu

Cho biểu thức P=11x:x1x+1xx+x (với x > 0 x1).

Tính giá trị của biểu thức P tại x=2022+42018202242018

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Có x=2022+42018202242018

=2018+22201822

=2018+220182=2018+22018+2=4 thỏa mãn điều kiện  x > 0 và x1

+ Vậy giá trị của biểu thức P tại x= 4 là: 4+14=32

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tìm tất cả các giá trị của để A=B.x4.

Với x0,x25 Ta có: A=B.x4

x+2x5=1x5.x4 x+2=x4(*)

Nếu x4,x25 thì (*)trở thành : x+2=x4

xx6=0x3x+2=0

Do x+2>0 nên x=3x=9 (thỏa mãn)

Nếu 0x<4 thì (*)trở thành : x+2=4x

x+x2=0x1x+2=0

Do x+2>0 nên x=1x=1 (thỏa mãn)

Vậy có hai giá trị x=1 x=9 thỏa mãn yêu cầu bài toán.

Lời giải

Với x>0;x1 ta có
P=x2x(x+2)+xx(x+2).x+1x1
P=x+x2x(x+2).x+1x1
P=(x1)(x+2)x(x+2).x+1x1x+1x

Vậy với x>0;x1 ta có  P=x+1x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP