Câu hỏi:

12/07/2024 4,851

Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại T, đường thẳng AT cắt đường tròn tại điểm thứ hai là D khác A. Chứng minh rằng ΔABTΔ BDT.   

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét tam giác ABT và tam giác BDT có:

 BTD chung

BAT^=TBD^ (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cùng chắn cung BD).

=>ΔABTΔ BDT. (g-g)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có MEC^ = 900  (nội tiếp chắn nửa đường tròn (O)) =>MEB^ = 900 .

Tứ giác AMEB có MAB^ = 900 ; MEB ^= 900 => MAB ^+ MEB ^= 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>  A2^= B2^.

Tứ giác ABCD là tứ giác nội tiếp => A1^= B2^ ( nội tiếp cùng chắn cung CD)

=> A^1= A2^ => AM là tia phân giác của góc DAE (2)

Từ (1) (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.