Câu hỏi:

24/10/2022 4,355

Hai đường tròn O;R O';r  tiếp xúc ngoài tại CR>r  gọi AC và BC là hai đường kính đi qua C của đường tròn (O) và (O'). DE là dây cung của đường tròn (O) vuông góc với AB tại trung điểm M của AB. Tia DC cắt đường tròn (O') tại điểm thứ 2 là F. DB cắt đường tròn (O') tại điểm thứ hai là G. Chứng minh DF, EG và AB đồng quy

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Ta có CG vuông góc với DB, mặt khác EC vuông góc với DB. Nhưng qua C chỉ tồn tại duy nhất một đường vuông góc với DB nên E, C , G phải thẳng hàng và DF, EG, AB phải đồng quy tại điểm C, chính là trực tâm tam giác EDB

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có MEC^ = 900  (nội tiếp chắn nửa đường tròn (O)) =>MEB^ = 900 .

Tứ giác AMEB có MAB^ = 900 ; MEB ^= 900 => MAB ^+ MEB ^= 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>  A2^= B2^.

Tứ giác ABCD là tứ giác nội tiếp => A1^= B2^ ( nội tiếp cùng chắn cung CD)

=> A^1= A2^ => AM là tia phân giác của góc DAE (2)

Từ (1) (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.