Câu hỏi:

13/07/2024 3,158

Cho đường tròn (O;R) , đường kính BC, A là điểm trên đường tròn (  khác   ). Kẻ AH vuông góc với BC (H thuộc BC). Đường tròn tâm I đường kính AH cắt AB,AC và đường tròn (O) tại D,E,F. Chứng minh tứ giác BDEC nội tiếp

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Chứng minh tứ giác BDEC nội tiếp:

Ta có: ADH^=AEH^=90° (góc nội tiếp chắn nửa đường tròn)

Ta lại có:ADE^=AHE^  (góc nội tiếp cùng chắn cung AE)

AHE^=ACB^ (cùng phụ với EHC )

Vậy tứ giác BDEC nội tiếp (góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có MEC^ = 900  (nội tiếp chắn nửa đường tròn (O)) =>MEB^ = 900 .

Tứ giác AMEB có MAB^ = 900 ; MEB ^= 900 => MAB ^+ MEB ^= 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn =>  A2^= B2^.

Tứ giác ABCD là tứ giác nội tiếp => A1^= B2^ ( nội tiếp cùng chắn cung CD)

=> A^1= A2^ => AM là tia phân giác của góc DAE (2)

Từ (1) (2) ta có M là tâm đường tròn nội tiếp tam giác ADE.