Câu hỏi:

12/07/2024 1,750 Lưu

Chứng minh định lí “Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn” thông qua việc giải bài tập sau đây:

Cho tam giác ABC có AB < AC. Tia phân giác của góc BAC cắt cạnh BC tại điểm D. Điểm E thuộc cạnh AC thoả mãn AE = AB. Chứng minh:

\(\widehat B\) > \(\widehat C\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chứng minh định lí “Trong một tam giác, góc Chứng minh: góc B > góc C (ảnh 1)

Từ câu a) suy ra \(\widehat B\) = \(\widehat E\)(1)

Ta có: \(\widehat {AED}\) + \(\widehat {DEC}\) = 180o (hai góc kề bù)

\(\widehat {EDC}\) + \(\widehat C\) + \(\widehat {DEC}\) = 180o (tổng ba góc của một tam giác).

Suy ra: \(\widehat {AED}\) = \(\widehat {EDC}\) + \(\widehat C\). Do đó \(\widehat {AED}\) > \(\widehat C\)(2)

Từ (1) và (2), ta có \(\widehat B\) > \(\widehat C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hai tam giác OMQ và OPN, ta có:

OM = OP (cùng bằng 2 cm); \(\widehat O\) là góc chung;

OQ = ON (cùng bằng 3 cm)

Suy ra ∆OMQ = ∆OPN (c.g.c).

Do đó MQ = PN (hai cạnh tương ứng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP