Câu hỏi:
12/07/2024 732Có hai xã cùng ở bên bờ sông Lam các kỹ sư muốn bắc một cây cầu qua sông Lam cho người dân hai xã. Để thuận lợi cho người dân đi lại, các kĩ sư cần phải chọn vị trí của cây cầu sao cho tổng khoảng cách từ hai xã đến chân cầu là nhỏ nhất. Bạn Nam đề xuất cách xác định vị trí cây cầu như sau Hình 37
- Kí hiệu điểm A chỉ vị trí xã thứ nhất, điểm B chỉ vị trí xã thứ hai, đường thẳng d chỉ vị trí bờ sông Lam.
- Kẻ AH vuông góc với d (H thuộc d), kéo dài AH về phía H và lấy điểm C sao cho AH = HC.
- Nối C với B, CB cắt đường thẳng d tại E.
Khí đó, E là vị trí của cây cầu.
Bạn Nam nói rằng: Lấy một điểm M trên đường thẳng d, M khác E thì MA + MB > EA + EB. Em hãy cho biết bạn Nam nói đúng hay sai? Vì sao?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Xét hai tam giác vuông EHA và EHC, ta có:
HA = HC (giả thiết), HE là cạnh chung.
Suy ra ∆EHA = ∆EHC (hai cạnh góc vuông).
Do đó EA = EC (hai cạnh tương ứng). Vì thế EA + EB = EC + EB = BC (1)
Chứng minh tương tự, ta có MA = MC. Vì thế MA + MB = MC + MB (2)
Xét tam giác MBC, ta có MB + MC > BC (bất đẳng thức tam giác) (3)
Từ (1), (2) và (3) ta có: MA + MB > EA + EB.
Vậy Bạn Nam nói đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chứng minh định lí “Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn” thông qua việc giải bài tập sau đây:
Cho tam giác ABC có AB < AC. Tia phân giác của góc BAC cắt cạnh BC tại điểm D. Điểm E thuộc cạnh AC thoả mãn AE = AB. Chứng minh:
ABD = ∆AED
Câu 2:
Cho góc nhọn xOy. Hai điểm M, N thuộc tia Ox thoả mãn OM = 2 cm, ON = 3 cm. Hai điểm P, Q thuộc tia Oy thoả mãn OP = 2 cm, OQ = 3 cm. Chứng minh MQ = NP (Hình 33).
Câu 3:
Cho góc xOy có Oz là tia phân giác. Hai điểm M, N lần lượt thuộc Ox, Oy và khác O thoả mãn OM = ON, điểm P khác O và thuộc Oz. Chứng minh MP = NP (Hình 34)
Câu 4:
Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng …………. của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Câu 5:
Chứng minh định lí “Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn” thông qua việc giải bài tập sau đây:
Cho tam giác ABC có AB < AC. Tia phân giác của góc BAC cắt cạnh BC tại điểm D. Điểm E thuộc cạnh AC thoả mãn AE = AB. Chứng minh:
\(\widehat B\) > \(\widehat C\).
Câu 6:
- Nếu hai cạnh và góc xen giữa của tam giác này lần lượt bằng …................................ của tam giác kia thì hai tam giác đó ……........
- Nếu AB = A’B’, \(\widehat A\) = \(\widehat {A'}\) và AC = A’C’ thì ∆ABC = ……. (c.g.c) (Hình 32)
Câu 7:
Cho ∆ABC và ∆MNP. Gọi D, E lần lượt là trung điểm của BC và CA; Q, R lần lượt là trung điểm của NP và PM. Chứng minh
AD = MQ;15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
5 câu Trắc nghiệm Toán 7 CTST Bài tập cuối chương 9 có đáp án (Nhận biết)
10 câu Trắc nghiệm Toán 7 CD Bài tập cuối chương 7 có đáp án (Nhận biết)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
về câu hỏi!