Câu hỏi:

12/07/2024 502

Trong thiết kế của một ngôi nhà độ nghiêng của mái nhà so với phương nằm ngang phải phù hợp với kết cấu của ngôi nhà và vật liệu làm mái nhà. Hình 56 mô tả mặt cắt đứng của ngôi nhà, trong đó độ nghiêng của mái nhà so với phương nằm ngang được biểu diễn bởi số đo góc ở đáy của tam giác ABC cân tại A. Tính độ nghiêng của mái nhà so với phương nằm ngang trong mỗi trường hợp sau:

Góc ở đỉnh A (khoảng) 140o đối với mái nhà lợp bằng fibro xi măng.

Góc ở đỉnh A (khoảng) 140 độ đối với mái nhà lợp bằng fibro xi măng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tam giác ABC cân tại A nên \(\widehat {ABC}\) = \(\widehat {ACB}\)

Ta có: \(\widehat {ABC}\) + \(\widehat {ACB}\) + \(\widehat A\) = 180° (tổng ba góc của một tam giác).

Suy ra \(\widehat {ABC}\) = \(\widehat {DAC}\)= \(\frac{{18{0^o} - \widehat A}}{2}\)

Với \(\widehat A\) = 140o, ta có \(\widehat {ABC} = \frac{{18{0^o} - {{140}^o}}}{2} = 2{0^o}\).

Độ nghiêng của mái nhà so với phương nằm ngang bằng 20o.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có góc A = 120 độ. Tia phân giác của góc A cắt BC tại D (ảnh 1)

Vì AD là tia phân giác của góc BAC, nên

\(\widehat {BAD}\) = \(\widehat {CAD}\) = \(\frac{1}{2}\)\(\widehat {BAC}\) = 60o

Tức là \(\widehat {DAE}\) = 60°

Ta có DE // AB (giả thiết) nên \(\widehat {ADE}\) = \(\widehat {DAB}\) (hai góc so le trong) do đó \(\widehat {ADE}\) = 60°.

Vậy tam giác ADE có \(\widehat {DAE}\) = \(\widehat {ADE}\) = 60o nên tam giác ADE là tam giác cân và có một góc bằng 60° nên tam giác ADE là tam giác đều.

Lời giải

Cho tam giác ABC cân tại A có M là trung điểm cạnh AC, N là trung điểm cạnh AB (ảnh 1)

Vì M, N lần lượt là trung điểm của AC và AB nên

AM = \(\frac{1}{2}\) AC, AN = \(\frac{1}{2}\) AB.

Mà AC = AB (vì tam giác ABC cân tại A) nên AM = AN

Xét hai tam giác ABM và ACN, ta có:

AB = AC, \(\widehat A\) là góc chung; AM = AN .

Suy ra ∆ABM = ∆ACN (c.g.c)

Do đó BM = CN (hai cạnh tương ứng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay