Câu hỏi:
29/10/2022 1,418
Cho hình thang ABCD có AB song song với CD, AB < CD, AD = BC. Gọi I, K lần lượt là trung điểm của các cạnh AB và CD. Đường thẳng qua I song song với AD cắt đoạn thẳng KD tại M. Đường thẳng qua I song song với BC cắt KC tại N Hình 73. Chứng minh:
a) IM = IN;
Cho hình thang ABCD có AB song song với CD, AB < CD, AD = BC. Gọi I, K lần lượt là trung điểm của các cạnh AB và CD. Đường thẳng qua I song song với AD cắt đoạn thẳng KD tại M. Đường thẳng qua I song song với BC cắt KC tại N Hình 73. Chứng minh:
a) IM = IN;

Quảng cáo
Trả lời:
Vẽ các đoạn thẳng IC, ID. Xét hai tam giác ADI và MID, ta có
= (hai góc so le trong);
ID là cạnh chung;
= (hai góc so le trong).
Suy ra ∆ADI = ∆MID (g.c.g). Do đó AD = MI, IA = DM (các cặp cạnh tương ứng)
Chứng minh tương tự ta có BC = IN, IB = NC
a) Vì AD = BC, AD = MI, BC = IN nên IM = IN.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có: = (giả thiết);
+ = 180o (hai góc kề bù)
Suy ra = = 90o
Vậy đường thẳng AM vuông góc với đoạn thẳng BC tại trung điểm M của nó nên AM là đường trung trực của đoạn thẳng BC.
Lời giải
- Điểm cách đều hai đầu mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.