Câu hỏi:
29/10/2022 788
Cho tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.
a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?
Cho tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.
a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?
Quảng cáo
Trả lời:

a) Do I là giao điểm của ba đường phân giác của tam giác ABC nên IM = IN = IP.
Do IM = IN nên tam giác IMN là tam giác cân tại I
Do IN = IP nên tam giác INP là tam giác cân tại I
Do IP = IM nên tam giác IPM là tam giác cân tại I
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Do điểm I là giao điểm của ba đường phân giác của tam giác ABC nên IM = IN = IP.
Xét hai tam giác vuông IAP và IAN, ta có:
IA là cạnh chung;
= (Vì I thuộc tia phân giác góc A).
Suy ra ∆IAP = ∆IAN (cạnh huyền – góc nhọn).
Do đó AP = AN (hai cạnh tương ứng).
Vì IN = IP nên I nằm trên đường trung trực của đoạn thẳng NP.
Vì AP = AN nên A nằm trên đường trung trực của đoạn thẳng NP.
Suy ra IA là đường trung trực của đoạn thẳng NP.
Chứng minh tương tự ta có: IB là đường trung trực của đoạn thẳng MP, IC là đường trung trực của đoạn thẳng MNLời giải

Xét hai tam giác ADB và ADC, ta có:
AD là cạnh chung;
= (do AD là tia phân giác góc A);
AB = AC (tính chất tan giác cân).
Suy ra ∆ADB = ∆ADC (c.g.c)
Do đó BD = CD (hai cạnh tương ứng).
Từ đó AD là đường trung tuyến của tam giác ABC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.