Tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G. Biết rằng G cũng là giao điểm ba đường trung trực của tam giác MNP. Chứng minh tam giác ABC đều.
Tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G. Biết rằng G cũng là giao điểm ba đường trung trực của tam giác MNP. Chứng minh tam giác ABC đều.
Quảng cáo
Trả lời:

Do G là giao điêmr các đường trung trực của tam giác MNP nên GM = GN = GP.
Do G là trọng tâm tam giác ABC nên GA = 2GM, GB = 2GN, GC = 2GP
Suy ra GA = GB = GC.
Do GB = GC, MB = MC nên GM là đường trung trực của đoạn thẳng BC. Mà A thuộc đường thẳng GM nên AB = AC.
Do GC = GA, NC = NA nên GN là đường trung trực của đoạn thẳng CA. Mà B thuộc đường thẳng GN nên BA = BC
Suy ra AB = AC = BC. Vậy tam giác ABC là tam giác đều.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì OA = OB nên O thuộc đường trung trực của cạnh AB của tam giác ABC.
Vì OB = OC nên O thuộc đường trung trực của cạnh BC của tam giác ABC.
Do đó O là giao điểm của ba đường trung trực của tam giác ABC.
Lời giải

Giả sử tam giác ABC có hai đường trung tuyến AM, BN cắt nhau tại G.
Do G cũng là giao điểm của các đường trung trực của tam giác ABC nên G thuộc đường trung trực của BC
Mà MB = MC nên M thuộc đường trung trực của BC
Do đó đường thẳng GM là đường trung trực của đoạn thẳng BC
Mà A thuộc đường thẳng GM nên AB = AC
Chứng minh tương tự ta cũng có BC = BA, suy ra AB = AC = BC
Vậy tam giác ABC là tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.