Câu hỏi:

29/10/2022 664

Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc OA, OB, OC hai đường trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 111). Chứng minh:

a) ∆OMA = ∆OMB và tia Om là tia phân giác của góc NMP;

a) ∆OMA = ∆OMB và tia Om là tia phân giác của góc NMP; (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hai tam giác vuông OMA và OMB, ta có:

OM là cạnh chung;

OA = OB (vì O là giao điểm ba đường trung trực của tam giác ABC).

Suy ra ∆OMA = ∆OMB (cạnh huyền – cạnh góc vuông).

Do đó OMA^  =  OMB^(hai góc tương ứng).

Vậy tia OM là tia phân giác của góc MNP.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

c) Chứng minh tia AH là tia phân giác của góc BAC.

Xem đáp án » 29/10/2022 3,962

Câu 2:

Cho hai tam giác ABC và MNP có:

AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh AI = MK.

Xem đáp án » 29/10/2022 3,126

Câu 3:

Nếu tam giác MNP có trọng tâm G. đường trung tuyến MI thì tỉ số  MGMI bằng

A. 34 ;          

B. 12 ;          

C. 23 ;          

D. 13 .

Xem đáp án » 29/10/2022 1,880

Câu 4:

Cho hai tam giác nhọn ABC và ECD, trong đó ba điểm B, C, D thẳng hàng. Hai đường cao BM và CN của tam giác ABC cắt nhau tại I, hai đường cao CP và DQ của tam giác ECD cắt nhau tại K (hình 110). Chứng minh AI // EK.

Cho hai tam giác nhọn ABC và ECD, trong đó ba điểm B, C, D thẳng hàng. Hai đường cao (ảnh 1)

Xem đáp án » 29/10/2022 1,864

Câu 5:

Bạn Hoa đánh dấu ba vị trí A, B, C trên một phần sơ đồ xe buýt ở Hà Nội năm 2021 và xem xe buýt có thể đi như thế nào giữa hai vị trí A và B. Đường thứ nhất đi từ A đến C và đi tiếp từ C đến B, đường thứ hai đi từ B đến A (Hình 106). Theo em đường nào đi dài hơn? Vì sao?

Bạn Hoa đánh dấu ba vị trí A, B, C trên một phần sơ đồ xe buýt ở Hà Nội năm 2021 và xem xe buýt có thể đi như thế nào giữa (ảnh 1)

Xem đáp án » 29/10/2022 1,740

Câu 6:

Cho tam giác nhọn MNP có trực tâm H. Khi đó góc HMN bằng góc nào sau đây?

A. Góc HPN ;        

B. Góc NMP;                  

C. Góc MPN;                  

D. Góc NHP.

Xem đáp án » 29/10/2022 1,428

Câu 7:

Cho tam giác ABC cân tại A có  ABC^= 70o. Hai đường thẳng BD và CE cắt nhau tại H.

a) Tính số đo các góc còn lại của tam giác ABC;

Cho tam giác ABC cân tại A có ABC  = 70o. Hai đường thẳng BD và CE cắt nhau tại H. a) Tính số đo các góc còn lại của tam giác ABC; (ảnh 1)

Xem đáp án » 29/10/2022 1,127

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store