Câu hỏi:

02/12/2022 10,020

Chứng minh rằng các phương trình sau có 3 nghiệm phân biệt:

a) x33x+1=0

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Dễ thấy hàm fx=x33x+1 liên tục trên R . Ta có:

f2=1f1=3f2.f1<0 tồn tại một số a12;1:fa1=01.

f0=1f1=1f0.f1<0 tồn tại một số a20;1:fa2=02.

f1=1f2=3f1.f2<0 tồn tại một số a31;2:fa3=03.

- Do ba khoảng (-2;1), (0;1)  và (1;2)  đôi một không giao nhau nên phương trình x33x+1=0 có ít nhất 3 nghiệm phân biệt.

- Mà phương trình bậc 3 thì chỉ có tối đa là 3 nghiệm nên x33x+1=0 có đúng 3 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng các phương trình sau luôn có nghiệm:

a) x53x+3=0

Xem đáp án » 02/12/2022 1,646

Câu 2:

b) 2x+61x3=3

Xem đáp án » 02/12/2022 1,343

Câu 3:

c) m2cosx2=2sin5x+1

Xem đáp án » 02/12/2022 571

Câu 4:

Chứng minh rằng các phương trình sau luôn có nghiệm với mọi giá trị của tham số:

a) 1m2x+13+x2x3=0

Xem đáp án » 02/12/2022 457

Câu 5:

b) x4+x33x2+x+1=0

Xem đáp án » 02/12/2022 390

Câu 6:

b) cosx+mcos2x=0

Xem đáp án » 02/12/2022 361

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store