Quảng cáo
Trả lời:
a) Xét
tồn tại một số sao cho
tồn tại một số sao cho
Từ đó luôn tồn tại một số nên phương trình luôn có nghiệm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Dễ thấy hàm liên tục trên R . Ta có:
tồn tại một số
tồn tại một số
tồn tại một số
- Do ba khoảng (-2;1), (0;1) và (1;2) đôi một không giao nhau nên phương trình có ít nhất 3 nghiệm phân biệt.
- Mà phương trình bậc 3 thì chỉ có tối đa là 3 nghiệm nên có đúng 3 nghiệm phân biệt.
Lời giải
b) Đặt
- Xét hàm số liên tục trên R
- Ta có: tồn tại 3 số và lần lượt thuộc 3 khoảng đôi một không giao nhau là và sao cho và do đây là phương trình bậc 3 nên có đúng 3 nghiệm phân biệt.
- Ứng với mỗi giá trị và ta tìm được duy nhất một giá trị thỏa mãn và hiển nhiên 3 giá trị này khác nhau nên PT ban đầu có đúng 3 nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.