Câu hỏi:

13/12/2022 4,058 Lưu

Cho hàm số  y=x+1x2+1. Mệnh đề nào sau đây là đúng?

A. Đồ thị hàm số có đúng một tiệm cận đứng, không có tiệm cận ngang. 

B. Đồ thị hàm số có đúng hai tiệm cận đứng, không có tiệm cận ngang. 

C. Đồ thị hàm số có đúng hai tiệm cận ngang, không có tiệm cận đứng.            

D. Đồ thị hàm số có đúng một tiệm cận đứng và một tiệm cận ngang.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

TXĐ:  D= đồ thị hàm số không có tiệm cận đứng.

Ta có:

 limx+y=limx+x+1x2+1=limx+x1+1xx1+1x2=limx+x1+1xx1+1x2=1y=1 là TCN;

 limxy=limxx+1x2+1=limxx1+1xx1+1x2=limxx1+1xx1+1x2=1y=1 là TCN.

Vậy đồ thị hàm số không có tiệm cận đứng và có đúng hai tiệm cận ngang. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

TXĐ:  D=;21;12;+. Ta có:

l  limx±y=1  y=1 là TCN;

l  limx2y=+  x=2 là TCĐ;

l  limx1+y=+  x=1 là TCĐ;

l  limx1y=+  x=1 là TCĐ;

l  limx2+y=+  x=2 là TCĐ.

Vậy hàm số đã cho có tất cả năm đường tiệm cận.

Chọn C.

Lời giải

Chọn B.

Ta có  limx±x+2x24x+m=0  y=0 là TCN với mọi m.

Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình  x24x+m=0 vô nghiệm    Δ'<0    m>4

Nhận xét. Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức  x24x+m=0 có nghiệm  x=2    m=12. Điều này là sai, vì với  m=12 thì hàm số trở thành  y=1x6. Đồ thị này vẫn còn TCĐ là  x=6.    

Câu 3

AM4;75 hoặc  M2;5.                     

BM4;3 hoặc  M2;1

CM4;3 hoặc  M2;5.                   
DM4;75  hoặc  M2;1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP