Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Áp dụng định lý Pythagore vào các tam giác vuông trong Hình 9.8, ta có:
+) x2 = 32 + 22 = 9 + 4 = 13 nên x = \(\sqrt {13} \) (đvđd).
+) 22 + y2 = \({\left( {2\sqrt 5 } \right)^2}\) nên y2 = 20 – 4 = 16, suy ra y = 4 (đvđd).
+) z2 = 32 + 12 = 9 + 1 = 10 nên z = \(\sqrt {10} \) (đvđd).
+) t2 + 52 = \({\left( {\sqrt {29} } \right)^2}\) nên t2 = 29 – 25 = 4 nên t = 2 (đvđd).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A. Khẳng định nào sau đây là đúng ?
(1) AB2 + BC2 = AC2.
(2) AB + BC = AC.
(3) AB2 + AC2 = BC2.
(4) AB + AC = BC.
(5) AC2 + BC2 = AB2.
(6) AC + BC = AB.
Câu 4:
Câu 5:
Câu 6:
Những bộ ba số đo nào dưới đây là độ dài ba cạnh của một tam giác vuông?
(1) 1 cm, 1 cm, 2 cm.
(2) 1 cm, 1 cm, \(\sqrt 2 \) cm.
(3) 2 cm, 4 cm, 20 cm.
(4) 2 cm, 4 cm, \(\sqrt {20} \) cm.
(5) 3 cm, 4 cm, 5 cm.
(6) 9 cm, 16 cm, 25 cm.
Câu 7:
về câu hỏi!