Câu hỏi:
11/07/2024 3,878
Một chiếc ti vi màn hình phẳng 32 inch với chiều ngang màn hình là 72 cm (1 inch = 2,54 cm). Tính chiều cao của màn hình ti vi đó.
Quảng cáo
Trả lời:
Lời giải
Gọi chiều cao màn hình ti vi là h (cm).
Áp dụng định lý Pythagore cho tam giác vuông với hai cạnh góc vuông là hai cạnh của màn hình chiếc ti vi.
Khi đó, cạnh huyền của tam giác vuông này có độ dài bằng: 32 . 2,54 = 81,28 (cm).
Áp dụng định lý Pythagore cho tam giác vuông ta suy ra:
h2 = 81,282 – 722 = 1 422,4384
Suy ra h = \(\sqrt {1422,4384} \) ≈ 37,72 (cm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử hình thoi ABCD có hai đường chéo AC = 6 cm, BD = 8 cm và O là giao điểm của AC và BD. Khi đó, O là trung điểm của AC, O là trung điểm của BD và AC vuông góc với BD tại O.
Suy ra OC = \(\frac{1}{2}\)AC = 3 cm, OD = \(\frac{1}{2}\)BD = 4 cm và \(\widehat {COD} = 90^\circ \).
Do đó, tam giác COD vuông tại O.
Áp dụng định lí Pythagore ta có:
CD2 = OC2 + OD2 = 32 + 42 = 25.
Suy ra CD = 5 cm. Vậy độ dài cạnh của hình thoi là 5 cm.
Lời giải
Lời giải
Xét tam giác đều ABC có cạnh AB = AC = BC = 4 cm.
Kẻ đường cao AH của tam giác đều ABC.
Khi đó, đường cao AH đồng thời là đường trung tuyến. Do đó, ta có:
BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}.4\)= 2 (cm).
Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có:
AH2 + BH2 = AB2
Suy ra AH2 = AB2 – BH2 = 42 – 22 = 12.
Do đó, \(AH = \sqrt {12} \) = \(2\sqrt 3 \) (cm).
Diện tích tam giác ABC là: \(\frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 2\sqrt 3 \cdot 4 = 4\sqrt 3 \) (cm2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.