Câu hỏi:
30/10/2023 681Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Vì tam giác cân có hai cạnh là 4 cm và 8 cm nên độ dài cạnh thứ ba của tam giác sẽ là 4 cm hoặc 8 cm.
Mà 4 + 4 = 8 không thỏa mãn bất đẳng thức tam giác nên ta loại trường hợp độ dài ba cạnh là 4 cm, 4 cm, 8 cm.
Do đó, độ dài ba cạnh của tam giác đó là 4 cm, 8 cm, 8 cm.
Giả sử tam giác ABC cân tại A có AB = AC = 8 cm, BC = 4 cm.
Kẻ đường cao AH (H thuộc BC) của tam giác ABC cân tại A. Khi đó, H là trung điểm của BC nên \(BH = \frac{1}{2}BC\)= 2 cm.
Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có:
AH2 + BH2 = AB2
Suy ra AH2 = AB2 – BH2 = 82 – 22 = 60.
Do đó, AH = \(2\sqrt {15} \) cm.
Diện tích tam giác ABC là: \(\frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 2\sqrt {15} \cdot 4 = 4\sqrt {15} \) (cm2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC vuông tại A. Khẳng định nào sau đây là đúng ?
(1) AB2 + BC2 = AC2.
(2) AB + BC = AC.
(3) AB2 + AC2 = BC2.
(4) AB + AC = BC.
(5) AC2 + BC2 = AB2.
(6) AC + BC = AB.
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Những bộ ba số đo nào dưới đây là độ dài ba cạnh của một tam giác vuông?
(1) 1 cm, 1 cm, 2 cm.
(2) 1 cm, 1 cm, \(\sqrt 2 \) cm.
(3) 2 cm, 4 cm, 20 cm.
(4) 2 cm, 4 cm, \(\sqrt {20} \) cm.
(5) 3 cm, 4 cm, 5 cm.
(6) 9 cm, 16 cm, 25 cm.
Câu 7:
về câu hỏi!