Cho tứ diện ABCD có tam giác BCD vuông cân tại B và AB ^ (BCD). Cho biết BC = , AB = . Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD).
Cho tứ diện ABCD có tam giác BCD vuông cân tại B và AB ^ (BCD). Cho biết BC = , AB = . Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD).
Quảng cáo
Trả lời:

Gọi I là trung điểm của CD.
Ta có: CD ^ BI và CD ^ AB suy ra CD ^ AI.
Ta nhận thấy: CD là giao tuyến của 2 mặt phẳng (ACD) và (BCD);
Mà
Suy ra
Tam giác BCD vuông cân tại B nên
Xét tam giác ABI vuông tại B, ta có:
Vậy góc giữa hai mặt phẳng (ACD) và (BCD) là
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Theo giả thiết:
Suy ra SA ^ (ABCD).
Khi đó:
Þ BC ^ (SAB) Þ (SBC) ^ (SAB).
b) Theo giả thiết:
Suy ra SA ^ (ABCD).
Khi đó:
Þ CD ^ (SAD) Þ (SCD) ^ (SAD).
c) Ta có:
Þ BD ^ (SAC) Þ (SBD) ^ (SAC).
d) Ta có:
(SAB) ^ (SBC) (Chứng minh trên);
(SAB) Ç (SBC) = SB;
Do đó AH ^ (SBC)
Mà AH ^ SB (giả thiết).
Nên AH ^ SC. (1)
Tương tự: AK ^ SC. (2)
Từ (1) và (2) suy ra: SC ^ (AHK).
Vậy (SAC) ^ (AHK).
Lời giải

Vẽ AK ^ ID (K Î ID).
Ta có ID ^ SA và ID ^ AK (1)
Þ ID ^ (SAK) Þ ID ^ SK. (2)
Từ (1) và (2) suy ra
Xét tam giác SAK vuông tại A có:
Tam giác SAD vuông tại A, ta có:
Xét tam giác SID vuông tại S, ta có:
Do đó
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

