Câu hỏi:
13/07/2024 25,268
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi H và K lần lượt là hình chiếu của A trên SB và SD. Chứng minh rằng:
a) (SBC) ^ (SAB);
b) (SCD) ^ (SAD);
c) (SBD) ^ (SAC);
d) (SAC) ^ (AHK).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi H và K lần lượt là hình chiếu của A trên SB và SD. Chứng minh rằng:
a) (SBC) ^ (SAB);
b) (SCD) ^ (SAD);
c) (SBD) ^ (SAC);
d) (SAC) ^ (AHK).
Quảng cáo
Trả lời:
a) Theo giả thiết:
Suy ra SA ^ (ABCD).
Khi đó:
Þ BC ^ (SAB) Þ (SBC) ^ (SAB).
b) Theo giả thiết:
Suy ra SA ^ (ABCD).
Khi đó:
Þ CD ^ (SAD) Þ (SCD) ^ (SAD).
c) Ta có:
Þ BD ^ (SAC) Þ (SBD) ^ (SAC).
d) Ta có:
(SAB) ^ (SBC) (Chứng minh trên);
(SAB) Ç (SBC) = SB;
Do đó AH ^ (SBC)
Mà AH ^ SB (giả thiết).
Nên AH ^ SC. (1)
Tương tự: AK ^ SC. (2)
Từ (1) và (2) suy ra: SC ^ (AHK).
Vậy (SAC) ^ (AHK).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vẽ AK ^ ID (K Î ID).
Ta có ID ^ SA và ID ^ AK (1)
Þ ID ^ (SAK) Þ ID ^ SK. (2)
Từ (1) và (2) suy ra
Xét tam giác SAK vuông tại A có:
Tam giác SAD vuông tại A, ta có:
Xét tam giác SID vuông tại S, ta có:
Do đó
Lời giải
a) Ta có:
(SAB) ^ (ABCD);
(SAD) ^ (ABCD);
Do đó SA ^ (ABCD).
(SAB) Ç (SAD) = SA.
Dễ dàng chứng minh được (SAD) ^ (SCD).
Vẽ AM ^ SD (M Î SD) Þ AM ^ (SCD)
Do đó (ABM) ^ (SCD) hay (ABM) là mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD).
Trong mặt phẳng (SCD) kẻ MN // CD (N Î SC).
Suy ra: MN // AB Þ MN Ì (α).
Vậy các giao tuyến của (α) với các mặt của hình chóp là AB, BN, NM, MA.
b)
Ta có: MN // AB; AB ^ AM (vì AB ^ (SAD)).
Suy ra ABNM là hình thang vuông tại A và M.
Tam giác SAD vuông tại A có AM là đường cao nên:
Vì MN // CD nên
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.