Câu hỏi:

13/07/2024 25,268

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi H và K lần lượt là hình chiếu của A trên SB và SD. Chứng minh rằng:

a) (SBC) ^ (SAB);

b) (SCD) ^ (SAD);

c) (SBD) ^ (SAC);

d) (SAC) ^ (AHK).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Theo giả thiết: 

SABABCD;SADABCD;SABSAD = SA.

Suy ra SA ^ (ABCD).

Khi đó: BCAB ABCD là hình vuông;BCSA (vì SAABCD).

Þ BC ^ (SAB) Þ (SBC) ^ (SAB).

b) Theo giả thiết:

SABABCD;SADABCD;SABSAD = SA.

Suy ra SA ^ (ABCD).

Khi đó: CDAD ABCD là hình vuông;CDSA (vì SAABCD).

Þ CD ^ (SAD) Þ (SCD) ^ (SAD).

c) Ta có: BDAC ABCD là hình vuông;BDSA (vì SAABCD).

Þ BD ^ (SAC) Þ (SBD) ^ (SAC).

d) Ta có:

(SAB) ^ (SBC) (Chứng minh trên);

(SAB) Ç (SBC) = SB;                           

Do đó AH ^ (SBC)

AH ^ SB (giả thiết).

Nên AH ^ SC. (1)

Tương tự: AK ^ SC. (2)

Từ (1) và (2) suy ra: SC ^ (AHK).

Vậy (SAC) ^ (AHK).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Vẽ AK ^ ID (K Î ID).

Ta có ID ^ SA và ID ^ AK (1)

Þ ID ^ (SAK) Þ ID ^ SK. (2)

Từ (1) và (2) suy ra SDI, ABCD=AKS^=60°.

Xét tam giác SAK vuông tại A có: sinAKS^=SASKSK=SAsin60°=2a3

Tam giác SAD vuông tại A, ta có: SD=a2+4a2=a5

Xét tam giác SID vuông tại S, ta có:

1SK2=1SI2+1SD21SI2=1SK21SD2

Do đó SI=2a5511

Lời giải

Media VietJack

a) Ta có:

(SAB) ^ (ABCD);

(SAD) ^ (ABCD);         

Do đó SA ^ (ABCD).

(SAB) Ç (SAD) = SA.

Dễ dàng chứng minh được (SAD) ^ (SCD).

Vẽ AM ^ SD (M Î SD) Þ AM ^ (SCD)

Do đó (ABM) ^ (SCD) hay (ABM) là mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD).

Trong mặt phẳng (SCD) kẻ MN // CD (N Î SC).

Suy ra: MN // AB Þ MN Ì (α).

Vậy các giao tuyến của (α) với các mặt của hình chóp là AB, BN, NM, MA.

b)

Ta có: MN // AB; AB ^ AM (vì AB ^ (SAD)).

Suy ra ABNM là hình thang vuông tại A và M.

Tam giác SAD vuông tại A có AM là đường cao nên:

1AM2=1SA2+1AD2=13a2+1a2=43a2AM=a32.

Vì MN // CD nên MNCD=SMSD

MNCD=SA2SD1SD=SA2SD2=SA2SA2+AD2=3a24a2

MN=34CD=34a

 SABMN=12.AM.(MN+AB)=12.a32.34a+a=7a2316

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP