Giải SBT Toán học 11 CTST Bài 3: Hai mặt phẳng vuông góc có đáp án
27 người thi tuần này 4.6 521 lượt thi 7 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải

Gọi I là trung điểm của CD.
Ta có: CD ^ BI và CD ^ AB suy ra CD ^ AI.
Ta nhận thấy: CD là giao tuyến của 2 mặt phẳng (ACD) và (BCD);
Mà
Suy ra
Tam giác BCD vuông cân tại B nên
Xét tam giác ABI vuông tại B, ta có:
Vậy góc giữa hai mặt phẳng (ACD) và (BCD) là
Lời giải

Vẽ AK ^ ID (K Î ID).
Ta có ID ^ SA và ID ^ AK (1)
Þ ID ^ (SAK) Þ ID ^ SK. (2)
Từ (1) và (2) suy ra
Xét tam giác SAK vuông tại A có:
Tam giác SAD vuông tại A, ta có:
Xét tam giác SID vuông tại S, ta có:
Do đó
Lời giải

a) Ta có: BC ^ AB (giả thiết);
Đồng thời BC ^ SA (vì SA ^ (ABC)).
Þ BC ^ (SAB)
Þ (SBC) ^ (SAB).
b) Vì tam giác ABC là tam giác vuông cân tại B nên BM ^ AC.
Mà BM ^ SA (vì SA ^ (ABC))
Þ BM ^ (SAC) (1)
BM Ì (SBM) (2)
Từ (1) và (2) suy ra (SBM) ^ (SAC).
Lời giải

a) Theo giả thiết:
Suy ra SA ^ (ABCD).
Khi đó:
Þ BC ^ (SAB) Þ (SBC) ^ (SAB).
b) Theo giả thiết:
Suy ra SA ^ (ABCD).
Khi đó:
Þ CD ^ (SAD) Þ (SCD) ^ (SAD).
c) Ta có:
Þ BD ^ (SAC) Þ (SBD) ^ (SAC).
d) Ta có:
(SAB) ^ (SBC) (Chứng minh trên);
(SAB) Ç (SBC) = SB;
Do đó AH ^ (SBC)
Mà AH ^ SB (giả thiết).
Nên AH ^ SC. (1)
Tương tự: AK ^ SC. (2)
Từ (1) và (2) suy ra: SC ^ (AHK).
Vậy (SAC) ^ (AHK).
Lời giải

a) Ta có:
(SAB) ^ (ABCD);
(SAD) ^ (ABCD);
Do đó SA ^ (ABCD).
(SAB) Ç (SAD) = SA.
Dễ dàng chứng minh được (SAD) ^ (SCD).
Vẽ AM ^ SD (M Î SD) Þ AM ^ (SCD)
Do đó (ABM) ^ (SCD) hay (ABM) là mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD).
Trong mặt phẳng (SCD) kẻ MN // CD (N Î SC).
Suy ra: MN // AB Þ MN Ì (α).
Vậy các giao tuyến của (α) với các mặt của hình chóp là AB, BN, NM, MA.
b)
Ta có: MN // AB; AB ^ AM (vì AB ^ (SAD)).
Suy ra ABNM là hình thang vuông tại A và M.
Tam giác SAD vuông tại A có AM là đường cao nên:
Vì MN // CD nên
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

