Câu hỏi:

24/08/2024 6,794 Lưu

Biết rằng parabol y = ax2 (a ≠ 0) đi qua điểm \(A\left( {2;4\sqrt 3 } \right).\)

a) Tìm hệ số a và vẽ đồ thị của hàm số y = ax2 với a vừa tìm được.

b) Tìm tung độ của điểm thuộc parabol có hoành độ x = −1.

c) Tìm các điểm thuộc parabol có tung độ \(y = 5\sqrt 3 .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Parabol đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\) nên ta có \(4\sqrt 3 = a{.2^2} = 4a\) suy ra \(a = \sqrt 3 .\)

Từ đó, vẽ được đồ thị của hàm số \(y = \sqrt 3 {x^2}\) như hình bên:

Biết rằng parabol y = ax2 (a ≠ 0) đi qua điểm A(2, 4can3) a) Tìm hệ số a và vẽ đồ thị của hàm số y = ax^2 với a vừa tìm được. b) Tìm tung độ của điểm thuộc  (ảnh 1)

b) Tung độ của điểm thuộc parabol có hoành độ x = −1 là \(y = \sqrt 3 .\left( { - 1} \right) = - \sqrt 3 .\)

c) Tọa độ điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \) thỏa mãn \(5\sqrt 3 = \sqrt 3 {x^2},\) hay x2 = 5, suy ra \(x = \sqrt 5 \) hoặc \(x = - \sqrt 5 .\)

Vậy có hai điểm cần tìm là \(\left( {\sqrt 5 ;5\sqrt 3 } \right)\)\(\left( { - \sqrt 5 ;5\sqrt 3 } \right).\)

a

ahshshs Jrjrj

Biết rằng parbol y=a^2 a khác 0 đi qia điểm a (2,2)
A,xác định hệ số a
B. Lấp bảng giá thị của ham số y = ax^2 a khác 0 với à vừa tim được
CỨU Với

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi độ dài cạnh của tấm tôn hình vuông ban đầu là x (cm). Điều kiện: x > 16.

Theo cách gập thì độ dài cạnh bên của chiếc thùng là 8 (cm) và độ dài hai cạnh đáy của chiếc thùng đều là x – 2.8 = x – 16 (cm).

Do đó, thể tích của chiếc thùng có dạng hình hộp chữ nhật là: 8.(x – 16)2 (cm3).

Do thể tích của hộp là 200 cm3 nên ta có phương trình:

8.(x – 16)2 = 200

(x – 16)2 = 25

x – 16 = 5 hoặc x – 16 = −5

x = 21 hoặc x = 11.

Vì điều kiện x > 16 nên ta chọn x = 21.

Vậy độ dài cạnh của tấm tôn hình vuông ban đầu là 21 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP