Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 1 = 0;\)
b) 3x2 – 9x + 3 = 0;
c) 11x2 – 13x + 5 = 0;
d) \(2{x^2} + 2\sqrt 6 x + 3 = 0.\)
Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 1 = 0;\)
b) 3x2 – 9x + 3 = 0;
c) 11x2 – 13x + 5 = 0;
d) \(2{x^2} + 2\sqrt 6 x + 3 = 0.\)
Quảng cáo
Trả lời:
a) Ta có: \(\Delta ' = {\left( { - \sqrt 5 } \right)^2} - 1.1 = 4 > 0.\)
Áp dụng công thức nghiệm thu gọn, phương trình có hai nghiệm phân biệt:
\({x_1} = \sqrt 5 + 2,\) \({x_2} = \sqrt 5 - 2.\)
b) Ta có: \(\Delta = {\left( { - 9} \right)^2} - 4.3.3 = 45 > 0,\) \(\sqrt \Delta = 3\sqrt 5 .\)
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{9 + 3\sqrt 5 }}{6} = \frac{{3 + \sqrt 5 }}{2},\) \({x_2} = \frac{{9 - 3\sqrt 5 }}{6} = \frac{{3 - \sqrt 5 }}{2}.\)
c) Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.11.5 = - 51 < 0.\)
Do đó, phương trình vô nghiệm.
d) Ta có: \(\Delta ' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0.\)
Áp dụng công thức nghiệm thu gọn, phương trình có nghiệm kép:
\({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Với m = 2 kg và v = 6 m/s, ta có: \(E = \frac{1}{2}{.2.6^2} = 36\) (J).
Vậy động năng của quả bóng là 36 J.
b) Với m = 1,5 kg và E = 48 J, ta có: \(48 = \frac{1}{2}.1,5.{v^2},\) suy ra v2 = 64 hay v = 8 (do v > 0). Vậy vận tốc bay của quả bóng là 8 m/s.
Lời giải
a) Parabol đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\) nên ta có \(4\sqrt 3 = a{.2^2} = 4a\) suy ra \(a = \sqrt 3 .\)
Từ đó, vẽ được đồ thị của hàm số \(y = \sqrt 3 {x^2}\) như hình bên:
b) Tung độ của điểm thuộc parabol có hoành độ x = −1 là \(y = \sqrt 3 .\left( { - 1} \right) = - \sqrt 3 .\)
c) Tọa độ điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \) thỏa mãn \(5\sqrt 3 = \sqrt 3 {x^2},\) hay x2 = 5, suy ra \(x = \sqrt 5 \) hoặc \(x = - \sqrt 5 .\)
Vậy có hai điểm cần tìm là \(\left( {\sqrt 5 ;5\sqrt 3 } \right)\) và \(\left( { - \sqrt 5 ;5\sqrt 3 } \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.