Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 1 = 0;\)
b) 3x2 – 9x + 3 = 0;
c) 11x2 – 13x + 5 = 0;
d) \(2{x^2} + 2\sqrt 6 x + 3 = 0.\)
Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 1 = 0;\)
b) 3x2 – 9x + 3 = 0;
c) 11x2 – 13x + 5 = 0;
d) \(2{x^2} + 2\sqrt 6 x + 3 = 0.\)
Quảng cáo
Trả lời:
a) Ta có: \(\Delta ' = {\left( { - \sqrt 5 } \right)^2} - 1.1 = 4 > 0.\)
Áp dụng công thức nghiệm thu gọn, phương trình có hai nghiệm phân biệt:
\({x_1} = \sqrt 5 + 2,\) \({x_2} = \sqrt 5 - 2.\)
b) Ta có: \(\Delta = {\left( { - 9} \right)^2} - 4.3.3 = 45 > 0,\) \(\sqrt \Delta = 3\sqrt 5 .\)
Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{9 + 3\sqrt 5 }}{6} = \frac{{3 + \sqrt 5 }}{2},\) \({x_2} = \frac{{9 - 3\sqrt 5 }}{6} = \frac{{3 - \sqrt 5 }}{2}.\)
c) Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.11.5 = - 51 < 0.\)
Do đó, phương trình vô nghiệm.
d) Ta có: \(\Delta ' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0.\)
Áp dụng công thức nghiệm thu gọn, phương trình có nghiệm kép:
\({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài cạnh của tấm tôn hình vuông ban đầu là x (cm). Điều kiện: x > 16.
Theo cách gập thì độ dài cạnh bên của chiếc thùng là 8 (cm) và độ dài hai cạnh đáy của chiếc thùng đều là x – 2.8 = x – 16 (cm).
Do đó, thể tích của chiếc thùng có dạng hình hộp chữ nhật là: 8.(x – 16)2 (cm3).
Do thể tích của hộp là 200 cm3 nên ta có phương trình:
8.(x – 16)2 = 200
(x – 16)2 = 25
x – 16 = 5 hoặc x – 16 = −5
x = 21 hoặc x = 11.
Vì điều kiện x > 16 nên ta chọn x = 21.
Vậy độ dài cạnh của tấm tôn hình vuông ban đầu là 21 cm.
Lời giải
a) Parabol đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\) nên ta có \(4\sqrt 3 = a{.2^2} = 4a\) suy ra \(a = \sqrt 3 .\)
Từ đó, vẽ được đồ thị của hàm số \(y = \sqrt 3 {x^2}\) như hình bên:
b) Tung độ của điểm thuộc parabol có hoành độ x = −1 là \(y = \sqrt 3 .\left( { - 1} \right) = - \sqrt 3 .\)
c) Tọa độ điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \) thỏa mãn \(5\sqrt 3 = \sqrt 3 {x^2},\) hay x2 = 5, suy ra \(x = \sqrt 5 \) hoặc \(x = - \sqrt 5 .\)
Vậy có hai điểm cần tìm là \(\left( {\sqrt 5 ;5\sqrt 3 } \right)\) và \(\left( { - \sqrt 5 ;5\sqrt 3 } \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.