Sử dụng máy tính cầm tay, tìm nghiệm gần đúng các phương trình sau (làm tròn kết quả đến chữ số thập phân thứ hai):
a) \(\sqrt 2 {x^2} - \sqrt 5 x - 1 = 0;\)
b) \({x^2} - \left( {\sqrt 3 - 1} \right)x - \sqrt 7 = 0.\)
Sử dụng máy tính cầm tay, tìm nghiệm gần đúng các phương trình sau (làm tròn kết quả đến chữ số thập phân thứ hai):
a) \(\sqrt 2 {x^2} - \sqrt 5 x - 1 = 0;\)
b) \({x^2} - \left( {\sqrt 3 - 1} \right)x - \sqrt 7 = 0.\)
Quảng cáo
Trả lời:
a) Sử dụng máy tính cầm tay, phương trình có hai nghiệm phân biệt:
\({x_1} \approx 1,94;\) \({x_2} \approx - 0,36.\)
b) Sử dụng máy tính cầm tay, phương trình có hai nghiệm phân biệt:
\({x_1} \approx 2,03;\) \({x_2} \approx - 1,3.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài cạnh của tấm tôn hình vuông ban đầu là x (cm). Điều kiện: x > 16.
Theo cách gập thì độ dài cạnh bên của chiếc thùng là 8 (cm) và độ dài hai cạnh đáy của chiếc thùng đều là x – 2.8 = x – 16 (cm).
Do đó, thể tích của chiếc thùng có dạng hình hộp chữ nhật là: 8.(x – 16)2 (cm3).
Do thể tích của hộp là 200 cm3 nên ta có phương trình:
8.(x – 16)2 = 200
(x – 16)2 = 25
x – 16 = 5 hoặc x – 16 = −5
x = 21 hoặc x = 11.
Vì điều kiện x > 16 nên ta chọn x = 21.
Vậy độ dài cạnh của tấm tôn hình vuông ban đầu là 21 cm.
Lời giải
a) Với m = 2 kg và v = 6 m/s, ta có: \(E = \frac{1}{2}{.2.6^2} = 36\) (J).
Vậy động năng của quả bóng là 36 J.
b) Với m = 1,5 kg và E = 48 J, ta có: \(48 = \frac{1}{2}.1,5.{v^2},\) suy ra v2 = 64 hay v = 8 (do v > 0). Vậy vận tốc bay của quả bóng là 8 m/s.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.