Câu hỏi:

24/08/2024 4,367 Lưu

Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2+bx+c=axx1xx2.

Áp dụng: Phân tích các đa thức sau thành nhân tử:

a) x2 + 11x + 18;

b) 3x2 + 5x – 2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với x1 và x2 là hai nghiệm của phương trình bậc hai ax2 + bx + c = 0, theo định lí Viète ta có: \({x_1} + {x_2} = - \frac{b}{a};\) \({x_1}{x_2} = \frac{c}{a}.\)

Do đó \[a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a{x^2} - a\left( {{x_1} + {x_2}} \right)x + a{x_1}{x_2}\]

\( = a{x^2} - a.\left( { - \frac{b}{a}} \right).x + a.\frac{c}{a} = a{x^2} + bx + c.\)

Đó là điều phải chứng minh.

Áp dụng:

a) Do phương trình x2 + 11x + 18 = 0 có hai nghiệm x1 = −2, x2 = −9 nên

x2 + 11x + 18 = (x + 2)(x + 9).

b) Do phương trình 3x2 + 5x – 2 = 0 có hai nghiệm \({x_1} = \frac{1}{3},\) x2 = −2 nên

\(3{x^2} + 5x - 2 = 3\left( {x - \frac{1}{3}} \right)\left( {x + 2} \right) = \left( {x + 2} \right)\left( {3x - 1} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(\Delta = {\left( { - 12} \right)^2} - 4.8 = 112 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1 + x2 = 12; x1x2 = 8.

b) Ta có: \(\Delta = {11^2} - 4.2.\left( { - 5} \right) = 161 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{{11}}{2};\) \({x_1}{x_2} = - \frac{5}{2}.\)

c) Ta có: \(\Delta = - 4.3.\left( { - 10} \right) = 120 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1 + x2 = 0; \({x_1}{x_2} = - \frac{{10}}{3}.\)

d) Ta có: \(\Delta = {\left( { - 1} \right)^2} - 4.3 = 1 - 12 = - 11 < 0\) nên phương trình vô nghiệm.

Lời giải

Nửa chu vi của bể bơi là 74 : 2 = 37 m.

Chiều rộng và chiều dài của bể bơi là hai nghiệm của phương trình bậc hai:

x2 – 37x + 300 = 0.

Ta có: \(\Delta = {\left( { - 37} \right)^2} - 4.300 = 169;\) \(\sqrt \Delta   = \sqrt {169} = 13.\)

Suy ra phương trình có hai nghiệm:

\({x_1} = \frac{{37 + 13}}{2} = \frac{{50}}{2} = 25;\) \({x_2} = \frac{{37 - 13}}{2} = \frac{{24}}{2} = 12.\)

Vậy chiều rộng và chiều dài của bể bơi lần lượt là 12 m và 25 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP