Câu hỏi:
24/08/2024 114Tìm m để phương trình x2 + 4x + m = 0 có hai nghiệm x1, x2 thỏa mãn \({x_1}^2 + {x_2}^2 = 10.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương trình có nghiệm khi \(\Delta ' = {2^2} - m = 4 - m \ge 0,\) tức là khi m ≤ 4.
Khi đó, phương trình có hai nghiệm x1, x2.
Theo định lí Viète, ta có: \({x_1} + {x_2} = - 4,\) \({x_1}{x_2} = m.\)
Do đó: \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( { - 4} \right)^2} - 2m = 16 - 2m = 10.\)
Suy ra 2m = 6, hay m = 3 (thỏa mãn điều kiện để phương trình có nghiệm).
Vậy với m = 3 thì phương trình đã cho có hai nghiệm thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính nhẩm nghiệm của các phương trình sau:
a) 2x2 – 9x + 7 = 0;
b) 3x2 + 11x + 8 = 0;
c) 7x2 – 15x + 2 = 0, biết phương trình có một nghiệm x1 = 2.
Câu 2:
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:
a) x2 – 12x + 8 = 0;
b) 2x2 + 11x – 5 = 0;
c) 3x2 – 10 = 0;
d) x2 – x + 3 = 0.
Câu 3:
Một bể bơi hình chữ nhật có diện tích 300 m2 và chu vi là 74 m. Tính các kích thước của bể bơi này.
Câu 4:
Cho phương trình x2 + x – 3 = 0 có hai nghiệm x1, x2.
a) Tính giá trị của biểu thức x12 + x22.
b) Lập phương trình bậc hai có hai nghiệm là \(\frac{1}{{{x_1}^2}}\) và \(\frac{1}{{{x_2}^2}}.\)
Câu 5:
Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:
Áp dụng: Phân tích các đa thức sau thành nhân tử:
a) x2 + 11x + 18;
b) 3x2 + 5x – 2.
Câu 6:
Chọn phương án đúng.
Tổng hai nghiệm của phương trình 2x2 – 4x + 1 = 0 là
A. 2.
B. −2.
C. \(\frac{1}{2}.\)
D. \( - \frac{1}{2}.\)
về câu hỏi!