Câu hỏi:

24/08/2024 1,653

Tìm m để phương trình x2 + 4x + m = 0 có hai nghiệm x1, x2 thỏa mãn \({x_1}^2 + {x_2}^2 = 10.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình có nghiệm khi \(\Delta ' = {2^2} - m = 4 - m \ge 0,\) tức là khi m ≤ 4.

Khi đó, phương trình có hai nghiệm x1, x2.

Theo định lí Viète, ta có: \({x_1} + {x_2} = - 4,\) \({x_1}{x_2} = m.\)

Do đó: \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( { - 4} \right)^2} - 2m = 16 - 2m = 10.\)

Suy ra 2m = 6, hay m = 3 (thỏa mãn điều kiện để phương trình có nghiệm).

Vậy với m = 3 thì phương trình đã cho có hai nghiệm thỏa mãn yêu cầu đề bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x2 + x – 3 = 0 có hai nghiệm x1, x2.

a) Tính giá trị của biểu thức x12 + x22.

b) Lập phương trình bậc hai có hai nghiệm là \(\frac{1}{{{x_1}^2}}\)\(\frac{1}{{{x_2}^2}}.\)

Xem đáp án » 24/08/2024 4,974

Câu 2:

Một bể bơi hình chữ nhật có diện tích 300 m2 và chu vi là 74 m. Tính các kích thước của bể bơi này.

Xem đáp án » 24/08/2024 4,738

Câu 3:

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:

a) x2 – 12x + 8 = 0;

b) 2x2 + 11x – 5 = 0;

c) 3x2 – 10 = 0;

d) x2 – x + 3 = 0.

Xem đáp án » 24/08/2024 4,636

Câu 4:

Tính nhẩm nghiệm của các phương trình sau:

a) 2x2 – 9x + 7 = 0;

b) 3x2 + 11x + 8 = 0;

c) 7x2 – 15x + 2 = 0, biết phương trình có một nghiệm x1 = 2.

Xem đáp án » 24/08/2024 4,411

Câu 5:

Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2+bx+c=axx1xx2.

Áp dụng: Phân tích các đa thức sau thành nhân tử:

a) x2 + 11x + 18;

b) 3x2 + 5x – 2.

Xem đáp án » 24/08/2024 1,791

Câu 6:

Chọn phương án đúng.

Tổng hai nghiệm của phương trình 2x2 – 4x + 1 = 0 là

A. 2.

B. −2.

C. \(\frac{1}{2}.\)

D. \( - \frac{1}{2}.\)

Xem đáp án » 24/08/2024 1,552
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay