Thể tích V của 1 kg nước (tính bằng cm3) ở nhiệt độ T (đơn vị: °C) khi T thay đổi từ 0°C đến 30°C được cho xấp xỉ bởi công thức:
V = 999,87 − 0,06426T + 0,0085043T2 − 0,0000769T 3.
(Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p.284)
a) Tìm nhiệt độ \[{T_0} \in \] (0; 30) để kể từ nhiệt độ \[{T_0}\]trở lên thì thể tích V tăng (làm tròn kết quả đến hàng đơn vị).
b) Hỏi thể tích V giảm trong khoảng nhiệt độ nào. (làm tròn kết quả đến hàng đơn vị).
Thể tích V của 1 kg nước (tính bằng cm3) ở nhiệt độ T (đơn vị: °C) khi T thay đổi từ 0°C đến 30°C được cho xấp xỉ bởi công thức:
V = 999,87 − 0,06426T + 0,0085043T2 − 0,0000769T 3.
(Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p.284)
a) Tìm nhiệt độ \[{T_0} \in \] (0; 30) để kể từ nhiệt độ \[{T_0}\]trở lên thì thể tích V tăng (làm tròn kết quả đến hàng đơn vị).
b) Hỏi thể tích V giảm trong khoảng nhiệt độ nào. (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:

Ta có \({\rm{V}}({\rm{T}}) = 999,87 - 0,06426\;{\rm{T}} + 0,0085043\;{{\rm{T}}^2} - 0,0000679\;{{\rm{T}}^3}\) với \({\rm{T}} \in [0;30]\). \({{\rm{V}}^\prime }({\rm{T}}) = - 0,06426 + 0,0170086\;{\rm{T}} - 0,0002037\;{{\rm{T}}^2}\)
\({{\rm{V}}^\prime }({\rm{T}}) = 0 \Leftrightarrow {\rm{T}} \approx 4\) hoặc \({\rm{T}} \approx 79,5\). Vì \({\rm{T}} \in [0;30]\) nên \({\rm{T}} \approx 4\).
Ta có bảng biến thiên của hàm số như sau:

Vậy thể tích \({\rm{V}}({\rm{T}})\) giảm trong khoảng nhiệt độ
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do tấm kim loại có bề rộng 80 cm nên ta có: 2x + y = 80\[ \Leftrightarrow \]y = 80 – 2x.
Để có thể thiết kế được máng trượt thì y > 0\[ \Leftrightarrow \]80−2x > 0\[ \Leftrightarrow \]x < 40.
Suy ra 0 < x < 40.
Diện tích của mặt cắt máng trượt là: S = xy = x(80 – 2x) = −2x2 + 80x.
b) Ta có: S(x) = − 2x2 + 80x với x \[ \in \] (0 ; 40);
S'(x)= − 4x+80;
S'(x)=0\[ \Leftrightarrow \]− 4x + 80=0\[ \Leftrightarrow \]x = 20.
Bảng biến thiên của hàm số S(x) như sau:

Do đó, hàm số S(x) đạt cực đại tại x = 20 và SCĐ = 80.
Vậy để cầu trượt đảm bảo an toàn nhất cho trẻ em thì x = 20 cm.
Lời giải
Ta có: \({f^\prime }(t) = \frac{{ - 5000\left( {1 + 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)
Tốc độ bán hàng là lớn nhất khi \({f^\prime }(t)\) lớn nhất. Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).
\({h^\prime }(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)
\( = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} \Leftrightarrow {h^\prime }(t) = 0\)
\( \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5({\rm{tm}})\)
Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.