Tìm giá trị lớn nhất và̀ giá trị nhỏ nhất của các hàm số sau:
\(y = 2{x^3} - 3{x^2} + 5x + 2\) trên đoạn [0 ; 2]
Tìm giá trị lớn nhất và̀ giá trị nhỏ nhất của các hàm số sau:
\(y = 2{x^3} - 3{x^2} + 5x + 2\) trên đoạn [0 ; 2]
Quảng cáo
Trả lời:

Ta có: \({y^\prime } = 6{x^2} - 6x + 5 = 6\left( {{x^2} - x + \frac{5}{6}} \right) = 6{\left( {x - \frac{1}{2}} \right)^2} + \frac{7}{2} > 0\forall x \in [0;2]\)
Do đó, hàm số \(y = 2{x^3} - 3{x^2} + 5x + 2\) đồng biến trên [0 ; 2].
Ta có: \(y(0) = 2;y(2) = {2.2^3} - {3.2^2} + 5.2 + 2 = 16\)
Do đó, \({\max _{[0;2]}}y = y(2) = 16,{\min _{[0,2]}}y = y(0) = 2\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({y^\prime } = \cos x - \sin x;{y^\prime } = 0 \Leftrightarrow \cos x = \sin x \Leftrightarrow x = \frac{\pi }{4}\) hoặc \(x = \frac{{5\pi }}{4}\) (vì \(x \in [0;2\pi ]\) )
\(y(0) = 1;y(2\pi ) = 1;y\left( {\frac{\pi }{4}} \right) = \sqrt 2 ;y\left( {\frac{{5\pi }}{4}} \right) = - \sqrt 2 {\rm{. }}\)
Do đó: \({\max _{[0,2\pi ]}}y = y\left( {\frac{\pi }{4}} \right) = \sqrt 2 ;{\min _{[0;2\pi ]}}y = y\left( {\frac{{5\pi }}{4}} \right) = - \sqrt 2 \).
Lời giải
Ta có: \({y^\prime } = {e^{ - x}} - (x + 1){e^{ - x}} = {e^{ - x}}(1 - x - 1) = - x \cdot {e^{ - x}}\)
\({y^\prime } = 0 \Leftrightarrow - x.{e^{ - x}} = 0 \Leftrightarrow x = 0\) (thỏa mãn \(x \in [ - 1;1]\) )
\(y( - 1) = 0;y(0) = 1;y(1) = \frac{2}{2}\) Do đó, \({\max _{[ - 1;1]}}y = y(0) = 1,{\min _{[ - 1;1]}}y = y( - 1) = 0\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.