Câu hỏi:

31/07/2025 16 Lưu

Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi vào khí quản khi họ được cho bởi công thức: V = k(R-r)r2 vôi 0 ≤ r <R, trong đó k là hằng số, R là bán kính bình thường của khí quản, r là bán kính khí quản khi ho (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Hỏi bán kính của khí quản khi ho bằng bao nhiêu thì tốc độ của không khí đi vào khí quản là lớn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \(V = k(R - r){r^2}\) với \(r \in [0;R)\)

Ta có \(V(r) = k \cdot \left( { - {r^2}} \right) + k(R - r) \cdot 2r = rk(2R - 3r)\).

Khi đó, trên nửa khoảng \([0;{\rm{R}}),{\rm{V}}({\rm{r}}) = 0\) khi \({\rm{r}} = 0\) hoặc \({\rm{r}} = \frac{2}{3}R\).

Bảng biến thiên của hàm số như sau:

 Ho ép khí quản co lại, ảnh hưởng đến tốc độ của không khí đi vào khí quản. Tốc độ của không khí đi (ảnh 1)

Từ bảng biến thiên, ta thấy \({\max _{[0,R)}}{\rm{V}} = \frac{4}{{27}}k{R^3}\) tại \({\rm{r}} = \frac{2}{3}R\).

Vậy \({\rm{r}} = \frac{2}{3}R\) thì tốc độ của không khí đi vào khí quản là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xem bể chứa có dạng hình hộp chữ nhật ABCD.ABCD’ như hình vẽ trên

Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].

Chiều dài của bể là 2x (m).

Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.

Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]

Tổng diện tích các mặt cần xây là:

\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]

Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]

\[S'(x) = 0 \Leftrightarrow x = 3\]

Bảng biến thiên:

 Ông Nam cần xây dựng một bể chứa nước có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc tưới cây trong vườn (ảnh 2)

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.

Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.

Vậy cần xây bể có chiều cao là 2 (m).

Lời giải

Tập xác định: \({\rm{D}} = {\rm{R}}\).

\({y^\prime } = - \frac{{15\left( {9{t^2} + 1} \right) - 270{t^2}}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = - \frac{{ - 135{t^2} + 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = \frac{{135{t^2} - 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}}\)

\({{\rm{y}}^\prime } = 0 \Leftrightarrow 135{{\rm{t}}^2} - 15 = 0 \Leftrightarrow t = \frac{1}{3}({\rm{vt}} \ge 0)\)

Bảng biến thiên

 Sự phân huỷ của rác thải hữu cơ y có trong nước sẽ làm tiêu hao oxygen hoà tan trong nước (ảnh 2)

Dựa vào bảng biến thiên ta có: Thời điểm nồng độ oxygen trong nước cao nhất là \(t = 0\) và thấp nhất \(t = \frac{1}{3}\)