Có hai xã A, B cùng ở một bên bờ sông Lam, khoảng cách từ hai xã đó đến bờ sông lần lượt là AA’ = 500 m, BB’ = 600 m và người ta đo được A'B' = 2200 m (Hình 37). Các kĩ sư muốn xây một trạm cung cấp nước sạch nằm bên bờ sông Lam cho người dân hai xã. Để tiết kiệm chi phí, các kĩ sư cần phải chọn vị trí M của trạm cung cấp nước sạch đó trên đoạn A’B' sao cho tổng khoảng cách từ hai xã đến vị trí M là nhỏ nhất. Hãy tìm giá trị nhỏ nhất của tổng khoảng cách đó.
Có hai xã A, B cùng ở một bên bờ sông Lam, khoảng cách từ hai xã đó đến bờ sông lần lượt là AA’ = 500 m, BB’ = 600 m và người ta đo được A'B' = 2200 m (Hình 37). Các kĩ sư muốn xây một trạm cung cấp nước sạch nằm bên bờ sông Lam cho người dân hai xã. Để tiết kiệm chi phí, các kĩ sư cần phải chọn vị trí M của trạm cung cấp nước sạch đó trên đoạn A’B' sao cho tổng khoảng cách từ hai xã đến vị trí M là nhỏ nhất. Hãy tìm giá trị nhỏ nhất của tổng khoảng cách đó.

Quảng cáo
Trả lời:
Đặt \(AM = x(m)\).
Suy ra \(BM = A{B^\prime } - AM = 2200 - x(m)\).
Rõ ràng, \({\rm{x}}\) phải thỏa mãn điều kiện \(0 < x < 2200\).
Áp dụng định lí Pythagore ta tính được:
\({\rm{AM}} = \sqrt {{A^\prime }{A^2} + {A^\prime }{M^2}} = \sqrt {{{500}^2} + {x^2}} (\;{\rm{m}});{\rm{ BM}} = \sqrt {B{B^{\prime 2}} + {B^\prime }{M^2}} = \sqrt {{{600}^2} + \left( {2200 - {x^2}} \right)} ({\rm{m}}).\)
Tống khoảng cách từ hai vị trí \({\rm{A}},{\rm{B}}\) đến vị trí \({\rm{M}}\) là
\({\rm{D}} = {\rm{AM}} + {\rm{BM}} = \sqrt {{{500}^2} + {x^2}} + \sqrt {{{600}^2} + \left( {2200 - {x^2}} \right)} ({\rm{m}}){\rm{. }}\)
Xét hàm số \({\rm{D}}({\rm{x}}) = \sqrt {{{500}^2} + {x^2}} + \sqrt {{{600}^2} + \left( {2200 - {x^2}} \right)} \) với \({\rm{x}} \in (0;2200)\).
Ta có \({{\rm{D}}^\prime }({\rm{X}}) = \frac{x}{{\sqrt {{{500}^2} + {x^2}} }} + \frac{{x - 2200}}{{\sqrt {{{600}^2} + {{(2200 - x)}^2}} }}\);
Trên khoảng \((0;2200)\), ta thấy \(D(x) = 0\) khi \(x = 1000\).
Bảng biến thiên của hàm số \(D(x)\) như sau:

Căn cứ vào bảng biến thiên, ta thấy hàm số \({\rm{D}}({\rm{x}})\) đạt giá trị nhỏ nhất bằng \(1100\sqrt 5 \) tại \({\rm{x}} = 1000\). Vậy giá trị nhỏ nhất của tống khoảng cách cần tìm là \(1100\sqrt 5 \;{\rm{m}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xem bể chứa có dạng hình hộp chữ nhật ABCD.A’B’C’D’ như hình vẽ trên
Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].
Chiều dài của bể là 2x (m).
Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.
Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]
Tổng diện tích các mặt cần xây là:
\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]
Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]
\[S'(x) = 0 \Leftrightarrow x = 3\]
Bảng biến thiên:

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.
Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.
Vậy cần xây bể có chiều cao là 2 (m).
Lời giải
Tập xác định: \({\rm{D}} = {\rm{R}}\).
Có \({y^\prime } = - \frac{{15\left( {9{t^2} + 1} \right) - 270{t^2}}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = - \frac{{ - 135{t^2} + 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = \frac{{135{t^2} - 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}}\)
Có \({{\rm{y}}^\prime } = 0 \Leftrightarrow 135{{\rm{t}}^2} - 15 = 0 \Leftrightarrow t = \frac{1}{3}({\rm{vt}} \ge 0)\)
Bảng biến thiên

Dựa vào bảng biến thiên ta có: Thời điểm nồng độ oxygen trong nước cao nhất là \(t = 0\) và thấp nhất \(t = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.