Câu hỏi:

19/08/2025 55 Lưu

Một đường dây điện được nối từ một nhà máy điện ở A đến một hòn đảo ở C như Hình 1.40. Khoảng cách từ C đến B là 4 km. Bờ biển chạy thẳng từ A đến B với khoảng cách là 10 km. Tổng chi phí lắp đặt cho 1 km dãy điện trên biển là 50 triệu đồng, còn trên đất liền là 30 triệu đồng. Xác định vị trí điểm M trên đoạn AB (điểm nổi dây từ đất liền ra đảo) để tổng chi phí lắp đặt là nhỏ nhất.

 Một đường dây điện được nối từ một nhà máy điện ở A đến một hòn đảo ở C như Hình 1.40. Khoảng cách từ C đến B là 4 km (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \(MB = x(km,0 \le x \le 10)\), khi đó, \(AM = 10 - x(\;{\rm{km}})\)\(MC = \sqrt {M{B^2} + C{B^2}} = \sqrt {{x^2} + 16} (\;{\rm{km}})\)

Khi đó, chi phí nối điện từ \({\rm{A}}\) đến \({\rm{C}}\) là: \(f(x) = 30(10 - x) + 50\sqrt {{x^2} + 16} \) (triệu đồng)

Ta có: \({f^\prime }(x) = - 30 + \frac{{50x}}{{\sqrt {{x^2} + 16} }} = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + 16} }} = \frac{3}{5} \Leftrightarrow 25{x^2} = 9{x^2} + 144 \Leftrightarrow x = 3\) (do \(0 \le x \le 10\) )

Ta có: \(f(0) = 500;f(3) = 460,f(10) = 100\sqrt {29} \) nên chi phí nhỏ nhất là 460 triệu đồng khi \(x = 3\)

Vậy \(M\) cách \(B\) một khoảng \(3\;{\rm{km}}\) trên đoạn AB (diểm nối dây từ đất liền ra đảo) thì tổng chi phí lắp đặt là nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xem bể chứa có dạng hình hộp chữ nhật ABCD.ABCD’ như hình vẽ trên

Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].

Chiều dài của bể là 2x (m).

Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.

Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]

Tổng diện tích các mặt cần xây là:

\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]

Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]

\[S'(x) = 0 \Leftrightarrow x = 3\]

Bảng biến thiên:

 Ông Nam cần xây dựng một bể chứa nước có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc tưới cây trong vườn (ảnh 2)

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.

Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.

Vậy cần xây bể có chiều cao là 2 (m).

Lời giải

Xét hàm số \(f(x) = \left( {{x_0} - x} \right){x^2}\) với \({x_0}\) cố định và \(\frac{1}{2}{x_0} \le x \le {x_0}\).

Do \(k\) là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi \(f(x)\) đạt giá trị lớn nhất.

Ta có \(f(x) = - {x^3} + {x_0}{x^2}\);

\({f^\prime }(x) = - 3{x^2} + 2{x_0}x;{\rm{ }}{f^\prime }(x) = 0 \Leftrightarrow x = 0{\rm{ hoac }}x = \frac{2}{3}{x_0}.\)

Bảng biến thiên:

 Khi một vật lạ mắc kẹt trong khí quản khiến ta phải ho, cơ hoành đẩy lên trên gây ra tăng áp lực trong phổi, theo đó cuống họng co thắt làm hẹp  (ảnh 1)

Dựa vào bảng biến thiên, ta có \({\max _{\left[ {\frac{1}{2}{x_j}{x_0}} \right]}}f(x) = f\left( {\frac{2}{3}{x_0}} \right)\).

Vậy vận tốc của luồng khí một cơn ho lớn nhất khi \(x = \frac{2}{3}{x_0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP