Cho một tấm nhôm có dạng hình vuông cạnh 6 dm. Bác Ánh cắt ở bốn góc bốn hình vuông cùng có độ dài x (dm), rồi gập tấm nhôm lại như hình vẽ bên dưới để được một cái hộp có dạng khối hộp chữ nhật không có nắp. Gọi V là thể tích của khối hộp đó tính theo x. Tìm x (dm) để khối hộp tạo thành có thể tích lớn nhất.
Cho một tấm nhôm có dạng hình vuông cạnh 6 dm. Bác Ánh cắt ở bốn góc bốn hình vuông cùng có độ dài x (dm), rồi gập tấm nhôm lại như hình vẽ bên dưới để được một cái hộp có dạng khối hộp chữ nhật không có nắp. Gọi V là thể tích của khối hộp đó tính theo x. Tìm x (dm) để khối hộp tạo thành có thể tích lớn nhất.

Quảng cáo
Trả lời:

Ta thấy độ dài x (dm) của cạnh hình vuông bị cắt phải thoả mãn điều kiện 0<x<3.
Thể tích của khối hộp là V(x) = x(6 – 2x)2 với 0 < x < 3.
Ta phải tìm \[{x_o} \in (0;3)\] sao cho V(xo) có giá trị lớn nhất.
Ta có: V'(x)=(6-2x)2 - 4x(6-2x) = (6-2x)(6-6x) = 12(3-x)(1-x).
Trên khoảng (0 ; 3), V'(x)=0 khi x = 1.
Bảng biến thiên của hàm số V(x) như sau:

Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0 ; 3), hàm số V(x) đạt giá trị lớn nhất bằng 16 tại x= 1.
Vậy để khối hộp tạo thành có thể tích lớn nhất thì x = 1 (dm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xem bể chứa có dạng hình hộp chữ nhật ABCD.A’B’C’D’ như hình vẽ trên
Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].
Chiều dài của bể là 2x (m).
Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.
Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]
Tổng diện tích các mặt cần xây là:
\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]
Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]
\[S'(x) = 0 \Leftrightarrow x = 3\]
Bảng biến thiên:

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.
Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.
Vậy cần xây bể có chiều cao là 2 (m).
Lời giải
Xét hàm số \(f(x) = \left( {{x_0} - x} \right){x^2}\) với \({x_0}\) cố định và \(\frac{1}{2}{x_0} \le x \le {x_0}\).
Do \(k\) là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi \(f(x)\) đạt giá trị lớn nhất.
Ta có \(f(x) = - {x^3} + {x_0}{x^2}\);
\({f^\prime }(x) = - 3{x^2} + 2{x_0}x;{\rm{ }}{f^\prime }(x) = 0 \Leftrightarrow x = 0{\rm{ hoac }}x = \frac{2}{3}{x_0}.\)
Bảng biến thiên:

Dựa vào bảng biến thiên, ta có \({\max _{\left[ {\frac{1}{2}{x_j}{x_0}} \right]}}f(x) = f\left( {\frac{2}{3}{x_0}} \right)\).
Vậy vận tốc của luồng khí một cơn ho lớn nhất khi \(x = \frac{2}{3}{x_0}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.