Câu hỏi:

31/07/2025 14 Lưu

Một nhà sản xuất cần làm ra những chiếc bình có dạng hình trụ với dung tích 1000 cm3. Mặt trên và mặt dưới của bình được làm bằng vật liệu có giá 1,2 nghìn đồng/cm2, trong khi mặt bên của bình được làm bằng vật liệu có giá 0,75 nghìn đồng/cm2. Tìm các kích thước của bình để chi phí vật liệu sản xuất mỗi chiếc bình là nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi bán kính đáy của bình là \({\rm{x}}({\rm{cm}},x > 0)\)

Chiều cao của bình là: \(\frac{{1000}}{{\pi \cdot {x^2}}}(\;{\rm{cm}})\)

Chi phí để sản xuất một chiếc bình là: \(T(x) = 2.1,2 \cdot \pi \cdot {x^2} + 0,75 \cdot \frac{{2000}}{x} = 2,4\pi \cdot {x^2} + \frac{{1500}}{x}\) (nghìn đồng) Để chi phí sản xuất mồi chiếc bình là thấp nhất thì \({\rm{T}}({\rm{x}})\) là nhỏ nhất.

\({T^\prime }(x) = 4,8\pi x - \frac{{1500}}{{{x^2}}},{T^\prime }(x) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{{625}}{{2\pi }}}}{\rm{ (th?a m\~a n) }}\)

Bảng biến thiên:

Một nhà sản xuất cần làm ra những chiếc bình có dạng hình trụ với dung tích 1000 cm3 (ảnh 1)

Để chi phí sản xuất mỗi chiếc bình là nhỏ nhất thì bán kính đáy của bình là \(\sqrt[3]{{\frac{{625}}{{2\pi }}}}{\rm{cm}}\) và chiều cao của bình là: \(\frac{{1000}}{{\pi \cdot {{\left( {\sqrt[3]{{\frac{{625}}{{2\pi }}}}} \right)}^2}}}(\;{\rm{cm}})\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xem bể chứa có dạng hình hộp chữ nhật ABCD.ABCD’ như hình vẽ trên

Gọi x (m) là chiều rộng của bể, ta có \[0 < x \le 4\].

Chiều dài của bể là 2x (m).

Gọi h (m) là chiều cao bể nước, ta có thể tích của bể là V = x.(2x).h.

Suy ra: \[h = \frac{V}{{2{x^2}}} = \frac{{36}}{{2{x^2}}} = \frac{{18}}{{{x^2}}}{\rm{ }}(m)\]

Tổng diện tích các mặt cần xây là:

\[S = {S_{ABCD}} + 2{S_{ABB'A'}} + 2{S_{BCC'B'}} = 2{x^2} + 2.x.\frac{{18}}{{{x^2}}} + 2.2x.\frac{{18}}{{{x^2}}} = 2{x^2} + \frac{{108}}{x}\]

Xét hàm số \[S(x) = 2{x^2} + \frac{{108}}{x}(0 < x \le 4)\], ta có: \[S'(x) = 4x - \frac{{108}}{{{x^2}}} = \frac{{4{x^3} - 108}}{{{x^2}}} = \frac{{4(x - 3)({x^2} + 3x + 9)}}{{{x^2}}}\]

\[S'(x) = 0 \Leftrightarrow x = 3\]

Bảng biến thiên:

 Ông Nam cần xây dựng một bể chứa nước có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc tưới cây trong vườn (ảnh 2)

Chi phí vật liệu xây dựng thấp nhất khi tổng diện tích các mặt cần xây S(x) là nhỏ nhất.

Dựa vào bảng biến thiên, ta có S(x) đạt giá trị nhỏ nhất tại x = 3, suy ra h = 2.

Vậy cần xây bể có chiều cao là 2 (m).

Lời giải

Tập xác định: \({\rm{D}} = {\rm{R}}\).

\({y^\prime } = - \frac{{15\left( {9{t^2} + 1} \right) - 270{t^2}}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = - \frac{{ - 135{t^2} + 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}} = \frac{{135{t^2} - 15}}{{{{\left( {9{t^2} + 1} \right)}^2}}}\)

\({{\rm{y}}^\prime } = 0 \Leftrightarrow 135{{\rm{t}}^2} - 15 = 0 \Leftrightarrow t = \frac{1}{3}({\rm{vt}} \ge 0)\)

Bảng biến thiên

 Sự phân huỷ của rác thải hữu cơ y có trong nước sẽ làm tiêu hao oxygen hoà tan trong nước (ảnh 2)

Dựa vào bảng biến thiên ta có: Thời điểm nồng độ oxygen trong nước cao nhất là \(t = 0\) và thấp nhất \(t = \frac{1}{3}\)